Unravelling the Changing Landscape of DDoS Attacks: The Role of IoT Botnets

Characterizing attack patterns

Carlos H. Gañán

ICANN DNS Symposium September 2023

Denial of Service Attacks

• Denial-of-Service (DoS) attack is an attempt by attacker to prevent legitimate users from using resources

- Different types:
 - Volumetric
 - Smurf Attacks, ICMP Floods, IP/ICMP Fragmentation, etc.
 - State-exhaustion
 - SYN Floods, UDP Floods, TCP Flood attack, Connection Exhaustion, etc.
 - Application layer attacks
 - HTTP-encrypted flood, DNS query floods, etc.

Distributed Denial of Service (DDoS) Attacks

- - Large number of hosts send service requests/packets simultaneously

- How can scalability be achieved?
 - "Associates"
 - Reflection and amplification
 - Botnet

Volumetric DDoS example

DrDOS example

Evolution of DDoS amplification vectors and factor (AF*)

*Estimated AF might vary depending on the query

Notorious DDoS attacks

Focus of this talk

- How has the emergence of IoT botnets influenced the landscape of DDoS attacks?
- Who constitutes the primary targets of DDoS attacks orchestrated through IoT botnets?
- How do the targets of IoT botnet attacks compare to DrDoS attacks?

Research methodology

Data collection

- Honeypot-based monitoring of amplification
 DDoS Attacks
- IoT botnet Command and control (C2) milker

https://sec.ynu.codes/dos

https://sec.ynu.codes/iot

Amplification honeypot (Amppot)

- Simulated Amplification Attack Vectors:
 - Listens on UDP ports with known amplification capabilities: QOTD (17), CharGen (19), DNS (53), NTP (123), NetBIOS (137), SNMP (161), SSDP (1900), MSSQL (1434), SIP (5060/5061)
- Modes of Operation:
 - o Emulated:
 - Protocol-specific parsers and responses
 - Random selection from pre-generated responses
 - Recursive resolution for certain protocols like DNS
 - o Proxied:
 - Forwards requests to internal servers operating vulnerable protocols
 - Responses sent back to client
 - No emulation, actual server response
 - O Agnostic:
 - Responds regardless of request validity
 - Sends large, invalid response

How to pinpoint IoT botnet DDoS targets?

Dynamic analysis

Execute malware in sandboxes

IoT botnet C2 Milker

Milked DDoS commands

- Attack commands received from the C2s:
 - Mirai botnet source code as reference:
 - UDP flooding
 Valve source engine flooding
 - TCP ACK flooding
 - TCP "Stomp" attack
 - TCP SYN flooding
 - GRE Packet flooding
 - HTTP request flooding
 - "DNS Water Torture"

```
"date": "2022-06-02_06:01:11",
 "status": "RECV",
 "data": "\\x00\\x2D\\x00\\x01\\x2C\\x08\\x01\\xBC\\x
\x67\\x79\\x2E\\x63\\x6F\\x6D\\x2F\\x18\\x04\\x35\\x30\\x36
 "info": {
   "packet_length": 45,
   "attack_execution_time": 300,
   "attack type": 8,
   "attack_destination_num": 1,
   "attack info": [
       "attack_ip": "188.114.96.2",
       "attack_netmask": 32
   "flag_num": 2,
   "flag info": [
       "flag_id": "0b1000",
       "flag_data_length": 23,
       "flag_data": "https://bangenergy.com/"
     },
       "flag_id": "0b11000",
       "flag_data_length": 4,
       "flag_data": "5000"
```

Characterizing attacks

Number of attacks per day

 Between 1% to 2.5% of the total number of daily DDoS attacks come from IoT botnets

Number of attacks per day

 About 90% of C2 servers sent less than 100 attacks commands per day

 On average, more than 13,000 DrDoS attacks per day

Attack duration

 50% of requested attacks had a duration of less than six minutes

 50% of DrDoS attacks had a duration of less than three minutes

Targeted ports

- DNS remains a prevalent DDoS attack vector
 - On average, around 2,000 DNS DrDoS attack per day

Targeted ports

- Trend of targeting game servers
 - Port 30120 (FiveM Server)
 - Port 25565 (Minecraft Server)
 - Port 7777 (Steam ARK Server)

Port	%	Port	%
80	16.0%	389	1.6%
53	7.1%	25565	1.5%
443	6.8%	1194	1.4%
22	6.0%	7777	1.2%
30120	1.9%	68	1.2%

- Amplification services
 - NTP and LDAP account for more than 64% of the attacks

Port	%	Port	%
123	32.7%	161	2.0%
389	31.9%	3702	1.6%
11211	8.9%	3283	1.5%
53	6.0%	1900	1.4%
19	4.5%	37810	1.2%

Characterizing targets

Data enrichment

- AS Types
 - Historical BGP data from Routeviews for precise AS Number (ASN) retrieval.
 - CAIDA'S AS classification and Standford's ASdb dataset.
 - Passive DNS data to identify hosting ASes using a heuristic approach.
- AS Rankings:
 - AS sizes and connectivity using CAIDA's AS Rankings.
- IP geolocation:
 - MaxMind's GeoIP location database for victim IP geolocation.
- Domain-Level popularity:
 - Tranco list to estimate domain value and popularity.

AS type comparison

Hosting networks are more frequently the focus of IoT-botnet attacks

AS rank comparison

DDoS attacks carried out by IoT botnets tend to target highly ranked ASes

Number of "victims" per attack

IoT botnet DDoS attacks more frequently target domains hosted on dedicated servers

Modeling Method: XGBoost for Target Analysis

- Objective: predict the likelihood of DrDoS vs. IoT-botnet Attack.
- Approach: XGBoost regressor
 - Parameters were tailored based on the results of a random search.
 - Adjustments were made within a small range (±10% for learning rate and ±20 for other parameters) to fine-tune the model without dramatically altering its structure.
 - Learning Rate: Adjusted around the best value to refine convergence without drastic changes.
 - Max Depth: Denotes the maximum depth of a tree. Chosen as the best value to prevent overfitting while capturing important patterns.
 - Number of Estimators: Refers to the number of boosting rounds or trees. Ranged around the best value to assess model performance with slightly more and fewer trees.
 - Subsample: Proportion of training data used for building trees. Kept constant with the best value to ensure stable and consistent sampling.

⊙ Feature Set:

- Ordinal Features: Domain count, CAIDA ranking of targeted AS.
- Categorical Features (One-Hot Encoded): Region based on victim IP's geo-location, AS type.

What factors differentiate targets of DDoS attacks?

- Domain Count: The count of domains holds the highest importance in predicting attack likelihood.
- AS Rank: CAIDA ranking of target AS plays a significant role.
- **GDP per Capita**: Economic strength, represented by GDP per capita, affects the attractiveness of targets.
- Asia , Americas, Europe: Geographic regions matter.

SHapley Additive exPlanations

- Lower number of domain names leads to higher chance of receiving an IoT-botnet attack.
- Larger ASes have higher chances of receiving an IoT-botnet attack.

Conclusions

Conclusion

- DDoS has been a longstanding issue for over two decades:
 - The attack vectors have remained relatively consistent.
- The rise of IoT botnets has amplified the scale of these attacks:
 - Longer attacks.

- Different victimization patterns from IoT botnets:
 - High-value targets often under attack.
 - Dedicated hosting attacks
 - · Reduced number of collateral victims.

Thank You and Questions

Email: carlos.ganan@icann.org

