
     
     

 
 
 
 
 
 
 
 
 
 
 
 

     
 

The IDN    Variant Issues    Project 
     
A Study of Issues Related to the 
Management of IDN Variant TLDs 
 
 
 
Draft published for public comment 
23 December 2011 
   



2 

 

The IDN Variant Issues Project:   
A Study of Issues Related to the Management of IDN Variant TLDs 

23 December 2011 

Contents 
 

Executive Summary ………………………………………………………………………………………………………………5 

1 Overview of this Report ………………………………………………………………………………………………..8 

1.1 Fundamental Assumptions ……………………………………………………………………………………9 

1.2 Variants and the Current Environment ………………………………………………………………..11 

2 Project Overview …………………………………………………………………………………………………………15 

2.1  The Variant Issues Project ……………………………………………………………………………………15 

2.2 Objectives of the Integrated Issues Report …………………………………………………………16 

2.3 Scope of the Integrated Issues Report ………………………………………………………………..17 

3 Range of Possible Variant Cases Identified ………………………………………………………………….18 

3.1 Classification of Variants as Discovered ………………………………………………………………18 

3.1.1 Code Point Variants …………………………………………………………………………………….19 

3.1.2 Whole-String Variants …………………………………………………………………………………19 

3.2  Taxonomy of Identified Variant Cases ………………………………………………………………….20 

3.3 Discussion of Variant Classes ……………………………………………………………………………….27 

3.4 Visual Similarity Cases …………………………………………………………………………………………32 

3.4.1 Treatment of Visual Similarity Cases …………………………………………………………….32 

3.4.2 Cross-Script Visual Similarity ………………………………………………………………………..33 

3.4.3 Terminology concerning Visual Similarity …………………………………………………….33 

3.5 Whole-String Issues……………………………………………………………………………………………..34 

3.6 Synopsis of Issues ………………………………………………………………………………………………..38 

4 Discussion of Issues:  Establishing Variant Labels ……………………………………………………….39 



3 

 

4.1 Establishing the Label Generation Rules ………………………………………………………………40 

4.2 Sample Options for Establishing Label Generation Rules …………………………………….42 

4.3 Synopsis of Issues ………………………………………………………………………………………………..47 

5 Discussion of Issues:  Treatment of Variant Labels ………………………………………………………48 

5.1 Possible States for Variant Labels ………………………………………………………………………..49 

5.2  User Experience with Variant Labels …………………………………………………………………..50 

5.2.1 IDNA2003 to IDNA2008 migration issues……………………………………………………..51 

5.2.2 Types of users ………………………………………………………………………………………………52 

5.2.3 User capabilities …………………………………………………………………………………………..53 

5.2.4 What users expect and what they get………………………………………………………… 54 

5.2.5 Consistency………………………………………………………………………………………………… 62 

5.2.6 Chains of actors and distributed systems…………………………………………………… 63 

5.3 ICANN Operations and Variant TLDs………………………………………………………………….. 63 

5.3.1 Evaluation ……………………………………………………………………………………………………63 

5.3.2 Management of Established Variant TLD Labels………………………………………….. 67 

5.3.3 Delegation of Variant TLDs …………………………………………………………………………..67 

5.3.4 Contractual Provisioning ………………………………………………………………………………67 

5.3.5 Security and Stability of the DNS ………………………………………………………………….68 

5.4 Registry / Registrar Operations …………………………………………………………………………..68 

5.4.1 DNS Resolution ……………………………………………………………………………………………69 

5.4.2 Registration Process ……………………………………………………………………………………69 

5.4.3 Whois (Domain Name Registration Data Directory Service) …………………………71 

5.4.4 Data Escrow …………………………………………………………………………………………………73 

5.4.5 Rights Protection Mechanisms …………………………………………………………………….73 

5.4.6 Security/Stability Considerations for TLD Registries/Registrars …………………..75 

5.5 Synopsis of Issues ………………………………………………………………………………………………..75 

6 Other Related Issues:  Code points currently not permitted in  the root zone ……………76 



4 

 

7 Discussion of Potential Additional Work …………………………………………………………………….78 

7.1 Developing a Label Generation Ruleset specification …………………………………………..78 

7.2 Developing a process for label generation …………………………………………………………..78 

7.3 Examining the feasibility of whole-string variants ……………………………………………….79 

7.4  Enhancing visual similarity processes …………………………………………………………………..79 

7.5  Examining the feasibility of mirroring …………………………………………………………………79 

7.6  Examining the feasibility of  variant management without  mirroring …………………80 

7.7  Assessing impacts on existing gTLD and Fast Track operations …………………………….80 

7.8  Assessing impacts on ICANN and IANA processes ………………………………………………..80 

Appendix 1:  The Case Study Team Reports ……………………………………………………………………….82 

Appendix 2:  Terminology ……………………………………………………………………………………………………84 

Appendix 3:  Overview of the Script Case Studies ……………………………………………………………….93  

Appendix 4:  Salient Characteristics of 6 scripts …………………………………………………………………..98 

Appendix 5:  IDN Variant Handling in the New gTLD Program…………………………………………… 105 

Appendix 6:  Survey of IDN Practices………………………………………………………………………………. 107 

Appendix 7:  Acknowledgements…………………………………………………………………………………….. 108 



5 

 

 

Executive Summary 
This integrated issues report describes the issues associated with the possible inclusion in 
the DNS root zone of IDN variant TLDs.  It builds on the work of six case study teams who 
examined the range of variant issues associated with particular scripts (Arabic, Chinese, 
Cyrillic, Devanagari, Greek, and Latin).   

This issues report is intended to describe each of the general and script-specific issues to be 
resolved for the cases studied.  Therefore, the following objectives have been established for 
this issues report: 

• Identify the sets of issues relevant to all the studied scripts. 

• Identify any sets of issues that are script specific. 

• Provide a brief analysis of the issues, including the benefits and risks of possible 
approaches identified. 

• Identify areas where further study or work could be pursued. 

Defining Variant TLDs 

“Variant” is a term that has been used in multiple ways, to indicate some sort of relationship 
between two or more labels or names.  It has been used variously to refer to, for example, a 
particular relationship between specific characters or code points in a particular script, or a 
set of alternate labels where some linkage relationship is articulated, or a desired procedure 
whereby names are registered in multiples, or a desired functionality causing shared 
behavior by some set of identifiers.  There is today no fully accepted definition for what may 
constitute a variant relationship between top-level labels. 

Implementing Variant TLDs 

The current DNS environment does not contain a “variant management” mechanism for the 
top level, i.e., a mechanism to support a workable implementation of variant TLDs and 
promote a good user experience.  A variety of potential variant management mechanisms 
have been raised in the various communities as means to facilitate solutions to particular 
problems.  Several communities have indicated a need for workable mechanisms in the area 
of IDN variants, to support deployment of the full range of products and services made 
possible by bringing IDN capabilities to the namespace. 

In the discussion of these issues, the report reveals a tension between the interest in 
creating greater functionality to address a range of potential variant cases (i.e., 
implementing variant TLDs), and the difficulties of using the DNS to meet those objectives 
(i.e., ensuring that such implementation happens in a stable and secure way that promotes a 
good user experience).  In constructing a classification of variant types, and outlining what 
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cases appear most appropriate for development of solutions, the report describes the need 
for cost-benefit analysis for each potential mechanism to balance risks, costs, and benefits. 

Using Classification as a Tool (see section 3) 

A classification of the potential variant types identified by the case study teams is proposed 
in the report to create a framework for understanding the issues, as well as to suggest 
common features that may cause a variant case to occur.  This, in turn, may inform 
consideration of how such a case could be incorporated in a variant management 
mechanism. 

Many of the issues are complex, and it is clear that the cases in the script studies vary 
widely.  The classification demonstrates that there is not a single “variant problem” to which 
a solution may be developed, but an array of unique characteristics and considerations to be 
taken into account when considering any type of implementation model. 

Creation of Label Generation Rules (see section 4) 

The term “Label Generation Rules” is used in this report to describe the set of rules that 
determine what labels may be allowed in a zone.  In the case discussed here, the label 
generation rules would govern what labels are to be allowed in the DNS root zone.  An 
established set of label generation rules would cover, for example, the identification of 
variant characters and the rules associated with use of those characters in labels.  Such rules 
would represent an established methodology for the identification of variant labels. 

Based on extensive discussion, the report indicates the need for a comprehensive set of 
label generation rules for the root zone as a prerequisite for implementation of IDN variant 
TLDs.  A detailed proposal for the label generation rules is beyond the scope of this report, 
but the report does outline the parameters by which these rules might be determined. 

Once variant labels can be identified, a range of possible states and corresponding actions 
may be taken on those labels.  Thus, a variant management mechanism could encompass 
both active use of labels in the DNS, and prevention of labels from use in the DNS.   

The report contains (see section 6) a brief discussion of variant issues that might be raised by 
certain changes to rules with regard to permissible code points for the root zone (cases such 
as U+200C, ZERO-WIDTH NON-JOINER, and U+200D, ZERO-WIDTH JOINER, and digits). 

Impacts on users and the DNS (see section 5)  

Maintaining a secure and stable DNS and promoting a good user experience are paramount, 
and linked, objectives.  A detailed discussion of the potential user experience outcomes 
caused by the existence of IDN variant TLD labels in particular states (e.g., active, blocked, 
mirrored) is included in the report.  These issues are considered from many user 
perspectives:  system administrators, other network operators, domain name registrants, 
registration service providers (i.e., registries and registrars), software developers, law 
enforcement and security investigators, and end users. 
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The impact of implementing IDN variant TLDs on existing operations in the DNS ecosystem is 
also considered.  There are a number of complex issues in the operational area that 
registries, registrars, and other providers should be aware of to facilitate a successful 
operation of variant TLDs.  The usability of variant TLDs is dependent on implementation by 
registries and registrars, and any proposed implementation will require broad stakeholder 
participation to ensure that registries and registrars provide stable, secure, consistent, and 
unambiguous DNS operations.  This includes the greatest possible clarity in communication 
and understanding of variant TLDs, to enhance the IDN end user experience in a secure way 
and to limit confusion for all types of users. 

Next Steps (see section 7) 

There should be no assumption that acceptable solutions are available or can be developed 
to address the wide range of issues identified in this report, or that can satisfy the wide 
range of community expectations regarding which IDN variant TLDs may be delegated.  

In analyzing the issues presented in the report, several areas concerning IDN variant TLDs 
have been identified where steps could be taken toward identifying potential solutions to 
the management of variant TLDs.  Any potential solutions identified would require additional 
analysis to establish whether they satisfactorily address the sets of issues considered here, 
and measured on their viability from policy, technical, security, user experience, and 
operational perspectives. 
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1 Overview of this Report 
This integrated issues report considers the issues associated with the possible inclusion in 
the DNS root zone of IDN variant TLDs.  It builds on the work of six case study teams who 
examined the range of variant issues associated with particular scripts.  See Appendix 1 for 
references to the case study issues reports.    

In developing this integrated issues report, ICANN has used the work of the case studies as 
background to create a common framework for consideration of these issues.   

The introductory sections (1 & 2) provide a context for the subject matter and the scope of 
the project undertaken by ICANN.  The identified issues discussed in the report are 
organized under three broad headings: 

• Issues concerning how to classify the range of potential variant cases identified in 
the script case study team reports.  These are discussed in section 3 of the report.  

• Issues concerning how variant TLDs are established.  These are discussed in section 4 
of the report.  

• Issues concerning how variant TLDs are treated once established.  These are 
discussed in section 5 of the report. 

Additional related issues, such as those associated with the use of code points not currently 
permitted in the root zone, are discussed in section 6.   

Possible considerations for next steps are discussed in section 7. 

A guide to the terminology used in the report is contained in Appendix 2. 

The sets of issues in this report are analyzed in light of certain overriding considerations:  the 
security and stability of the DNS, and user experience.  Maintaining the security and stability 
of the DNS is central to ICANN’s core mission.  It is of the utmost importance that the actual 
operation and maintenance of the DNS, on which many services rely, are not adversely 
impacted by the introduction of IDN variant TLDs.  Where relevant, issues specifically 
impacting the stability of the DNS are discussed.  Secondly, user experience considerations 
are a key theme throughout the discussion, with an extended examination of these issues in 
section 5.  These issues concern avoidance of including variant TLDs in the DNS root zone in 
a manner that creates user vulnerabilities or a probability of confusion, as well as an interest 
in functionality and efficiency for the user experience. 

ICANN has been assisted in the creation of this report by a coordination team comprised of 
representatives from the case study teams.  The coordination team provided valuable 
language and script support in discussion of the issues, and also served as reviewers to the 
structure and content of this report.  Many of the discussions and comments from the 
coordination team are reflected in the report; however, this integrated issues report is the 
product of ICANN and as such may not necessarily reflect the views of individual members of 
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the coordination team.  Where specific case studies are cited in the report, the reader 
should refer to the relevant case study team report (see references in Appendix 1) for the 
complete account of that team’s work.   

A draft version of this report was circulated to the coordination team and efforts have been 
made to capture all review and feedback provided as of this writing.  An extended review 
may not have been possible by all coordination team members due to time constraints, 
however, and thus members may be providing additional feedback on the report during the 
public comment period. 

1.1 Fundamental Assumptions 

The mission of ICANN is to coordinate, at the overall level, the global Internet's 
systems of unique identifiers, and in particular to ensure the stable and secure 
operation of the Internet's unique identifier systems. When considering the possible 
delegation of IDN variant TLDs, ICANN has the responsibility to undertake these 
activities in a manner that will not adversely affect the security or stability of the 
DNS. 

At the current time, a variant management mechanism for the top level does not 
exist.  In considering the issues associated with developing such a mechanism, 
certain existing references are used as an underlying foundation.  The Unicode 
standard1 (currently version 6.0) provides a repertoire of code points used in world 
scripts, including various classifications of character properties, and normalization 
rules.  The Internationalizing Domain Names in Applications (IDNA) protocol (RFCs 
5890-4)2 specifies rules for determining whether a code point, considered in 
isolation or in context, is a candidate for inclusion in a domain name. 

It is assumed that these reference points will continue to be applicable to the DNS.  
In addition to the assumption of stable references, ICANN has also distilled from the 
case study team reports and the mission and core values of ICANN a set of 

                                                           
1 The Unicode Standard is a character coding system designed to support the worldwide interchange, 
processing, and display of the written texts of the diverse languages and technical disciplines of the 
modern world.  See   http://unicode.org/standard/standard.html.  As of this writing, Unicode is at 
version 6.0, but a new version (6.1) is contemplated for publication in February of 2012.  Various 
ancillary documents are being prepared for an update to align with Unicode 6.1.  Public review and 
comment are invited on the drafts Issue #208:  Proposed Update UTR #36: Unicode Security 
Considerations (see http://www.unicode.org/review/pri208/) and Issue #209:  Proposed Update 
Unicode Technical Standard #39 Unicode Security Mechanisms (see 
http://www.unicode.org/review/pri209/). 
 
2 See http://www.rfc-editor.org/rfc/rfc5890.txt; http://www.rfc-editor.org/rfc/rfc5891.txt, 
http://www.rfc-editor.org/rfc/rfc5892.txt; http://www.rfc-editor.org/rfc/rfc5893.txt; http://www.rfc-
editor.org/rfc/rfc5894.txt, http://www.rfc-editor.org/rfc/rfc5895.txt. 
 
 
 

http://unicode.org/standard/standard.html
http://www.unicode.org/review/pri208/
http://www.unicode.org/review/pri209
http://www.rfc-editor.org/rfc/rfc5890.txt
http://www.rfc-editor.org/rfc/rfc5891.txt
http://www.rfc-editor.org/rfc/rfc5892.txt
http://www.rfc-editor.org/rfc/rfc5893.txt
http://www.rfc-editor.org/rfc/rfc5894.txt
http://www.rfc-editor.org/rfc/rfc5894.txt
http://www.rfc-editor.org/rfc/rfc5895.txt
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fundamental assumptions, articulated below, which have been used in the 
development of this report. 

1. The root zone is a shared resource, and the management of the root zone 
should accommodate, to the maximum extent possible, the needs of users of 
multiple global scripts.  Taking into account as far as possible the unique needs 
of each script, principles of fair and equitable treatment should be adhered to, 
avoiding undue consideration for users of particular languages and scripts in a 
space that is used by all.  In addition, both gTLDs and ccTLDs co-exist in the root 
zone and are relied upon by Internet users around the world.  While gTLDs and 
ccTLDs may involve different operating environments, it is critical that a reliable 
user experience is produced across the TLD space.  As a result, any label 
generation rules for TLDs will need to be adhered to by both ccTLDs and gTLDs.  
(See section 4 for a discussion of label generation rules.) 

2. In the early stages of developing a variant management mechanism, a cautious 
approach should be adopted; if necessary, a more liberal approach may be 
adopted later.  A principle of incrementalism appears well-suited to actions in 
this arena.  Given that experience in this area is limited, and actions taken will 
create precedents and outcomes that cannot be undone, variant TLD labels 
should be narrowly defined, and restrictive rules for active use of variant labels 
in the DNS should be adopted.  Wherever possible, instead of adding a new type 
of variant TLD label, an alternative approach should be used – for example, using 
an existing ICANN evaluation or objection process that delivers an appropriate 
way of blocking undesired TLD strings.  If there is a process already in existence 
that delivers a similar result to what is desired, that process should be used 
rather than establishing a new type of variant label.  The goal should be to 
maximize efforts toward the prevention of future problems, and to minimize 
active entries in the DNS to those where an explicit need has been established, 
the user experience implications have been fully studied, and no negative 
impacts to security or stability have been identified. 

3. The root zone is a special case, and the approach taken to variant management 
in the root need not prescribe that taken by individual TLD registries.  ICANN 
must adopt and maintain a consistent policy for consideration of requests for 
IDN variant TLDs, and this may entail specific criteria and rules applicable for 
variant labels to be allowed at the top level.  However, formulation of TLD 
registry policy often takes into account the specific user context, and there may 
be corresponding reasons for different criteria or rules relating to variant label 
generation and use, subject to certain minimum requirements necessary for 
security or stability reasons.  Accordingly, TLD registry operators should not have 
an automatic obligation to abide by all of the same variant tables and policies 
used at the top level.  
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4. Users dealing with technology learn very quickly and can accommodate to a 
wide variety of behaviors, provided that they can build some model of the 
behavior, and provided that the behavior is consistent and predictable once 
learned.  Recognizing the need for usability of multiple scripts in the DNS, and 
the desirability of reasonable approximations of natural language usage, it is 
also assumed that users are not dependent on the ability to use the full natural 
language without restrictions, and will be able to accommodate certain 
limitations to the full natural language where necessary.  To create the 
consistency required for logical user adaptation, variant management 
mechanisms should be based on known and predictable rules and procedures, 
fully available to all users. 

1.2 Variants and the Current Environment 
“Variant” is a term that has been used in multiple ways, to indicate some sort of 
relationship between two or more labels or names.  It has been used variably to 
refer to, for example, a particular relationship between specific characters or code 
points in a particular script, or a set of alternate labels where some linkage 
relationship is articulated, or a desired procedure whereby names are registered in 
multiples, or a desired functionality causing shared behavior by some set of 
identifiers.   

In the DNS environment today, there is no accepted definition for what may 
constitute a variant relationship between top-level labels, nor is there a “variant 
management” mechanism for the top level, although such has often been proposed 
as a way to facilitate solutions to a particular problem.  Several communities have 
indicated an urgent need for solutions in this area, to support deployment of the full 
range of products and services made possible by bringing IDN capabilities to the 
namespace.   

In the discussion of issues, the report reveals a tension between the unmistakable 
interest in creating greater functionality to address a range of potential variant 
cases, and the difficulties of using the DNS to meet these objectives.  In proposing a 
classification of “variant” cases and outlining what cases appear most appropriate 
for development of solutions, the report attempts to highlight the cost-benefit 
analysis that needs to be done before undertaking any implementation. 

The notion of variants is extremely compelling.  The most aggressive sort of variant 
proposals require some idea of using what are strictly speaking different names in 
the DNS as though they are the same, or treating a pair of separate names in a way 
that accesses separate, but closely related, content.  The basic problem is that, 
owing to the vagaries of the encoding of characters, the rendering of fonts, and 
various other historical facts, strings that do not match one another as far as a 
computer is concerned are “the same” or “exactly equivalent” to a user of some 
natural languages.  Such user expectations of linkage where none occurs exist in the 
current space, with the result that users are surprised. Many discussions of variant 
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issues appear to be based on a commonly-held assumption that making the user 
experience as intuitive as possible can be easily accomplished via certain 
adjustments to the operation of the DNS, with the outcome that users will not be 
surprised.   

Regardless of how tempting, however, the assumption that this type of expectation 
can be fulfilled by way of DNS configuration conceals three important problems. 
One is that “users” are not a single group.  This issue is discussed in detail later in 
the report (see section 5).  The other two problems are more fundamental, and 
must be considered before proceeding. 

The DNS is designed as a known-item search system, and it works by exact match 
(with the single exception of a wildcard label, which matches everything). Many of 
the proposals commonly referred to as “variants” are attempts, however well-
meaning, to make the DNS appear to match any number of different items as 
though they were the same item.  But the DNS is extremely badly adapted to that 
sort of use.  First, while there are ways of aliasing one name to another (CNAME and 
DNAME), they are not reversible and therefore do not capture the sort of 
relationship that is needed in many cases.  The DNS is only loosely coherent in its 
design, so making names “be the same” by provisioning them equivalently is error-
prone, and in any case, is guaranteed sometimes to be inconsistent and therefore 
surprising.  Finally, since the DNS has distributed management, the desired 
consistent user experience cannot actually be assured (except, perhaps, by very 
heavy-handed administrative or contractual procedures) because a zone lower in 
the tree might adopt different conventions.  This leads to more uncertainty on the 
part of users, and not less.  All of the above suggests that trying to avoid user 
surprise and achieve the desired user experience using the DNS (or at least the DNS 
as it stands today) is an ill-suited strategy to achieve the optimal outcomes. 

Another problem lies in supposing that, by using aliasing or some sort of parallel 
provisioning techniques in the DNS, one will have solved all or even a substantial 
number of the surprises that users will face.  Even if it is possible to make two names 
somehow be the same in the DNS, that sameness is invisible to other applications on 
the Internet.  Those applications often need to know what names they themselves 
are known by to others. 

For example, if an email is sent to localpart@dname.example.com and that name 
has a DNAME that resolves to realname.example.com, the mail transport agent is 
not going to rewrite the server-part of the address. It is going to send the mail to the 
MX for realname.example.com. If the mail exchange server for 
realname.example.com does not know it has to handle email for 
dname.example.com, the mail will be rejected (or, worse, just disappear)3. HTTP 

                                                           
3 It has been noted that this may be seen as a desirable feature. The argument is that if by default a 
mail server is configured for all the variants of a domain, there could be a risk of denial of service 
attacks where third parties might redirect domains to the mailbox in question. 

mailto:localpart@dname.example.com
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servers are similarly ignorant about all the names pointing at them; indeed, if they 
weren’t, modern virtual hosting would be impossible. 

Internet protocols can be divided roughly into two types: those that need to know 
their own name or that can take advantage of knowing it, and those that do not.  In 
FTP, for instance, it (usually) does not matter what domain name you used when 
you connected: once you have connected and are authenticated, the name of the 
server you used makes no difference.  Many other protocols (including HTTP and 
SMTP) are designed to be sensitive to the name with which they were contacted; in 
other cases (such as IMAP), one mode of operation is sensitive to the server’s name, 
and another is not.  Whenever a server is sensitive to the name by which it is known, 
that sensitivity means that the server needs to know all its own names when they 
start service.  Without support for lookup of the aliases of a host (in the DNS such 
support does not today exist), this operation has to be supported by direct 
configuration of the server software. 

In addition to the above, it is worth remembering that a very significant portion of 
Internet users may not rely on DNS names to find what they are looking for, but 
instead type whatever they want to find into a search engine.  Search engines do not 
treat sites as being related to one another on the basis of their IP addresses, or most 
other things obtainable from the DNS.  Instead, sites with different http server 
names are grouped together depending on various http response codes (generally, 
http redirects).  It is an http redirect that causes two otherwise-unrelated DNS 
names to be treated as “the same” web server.  Adding any sort of support to the 
DNS to link the http servers together will have little or no effect on their relationship 
to each other in search engine results, at least until the search engines start using 
such features. 

It is conceivable that the DNS could be altered to support a way to look up variants 
(of whatever type and however they might be supported) for a name.  This would 
permit server software to do some auto-configuration of itself at start up time.  At 
the moment, however, such support does not exist and it is not clear how long it 
would take to fully understand the issues, including whether this could be done 
without causing security or operational problems, and then standardize on a 
representation in the DNS; much less to add such support to server software and 
deploy it widely enough across the network to make it useful. 

This issue is extremely significant to the aimed-for benefit from adding variants: it 
might be that the cost of adding this support (whatever such support turns out to 
be) outweighs the benefit in some cases, because of the far greater chance that 
applications are not configured correctly and the great difficulty in troubleshooting 
such conditions given the limited tools that are available.  This consideration does 
not mean that all types of variants are impossible, or that trying to have multiple, 
related, names is wrong in every case.  But it does mean that in most cases the costs 
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and risks involved are significant and would require demonstrating a high level of 
user benefit to undertake development of such functionality via the DNS. 



15 

 

 

2 Project Overview 
 
Historically, the DNS root zone has been limited to a subset of the characters in the US-ASCII 
(American Standard Code for Information Interchange) character set. This is changing with 
the introduction of Internationalized Domain Names (IDNs), including the introduction of 
new top-level domains (TLDs) in multiple scripts, enabling Internet users to access domain 
names using writing systems familiar to them.  

The opening of the IDN country code Top-Level Domain (ccTLD) Fast Track Process4 by 
ICANN in October 2009 enabled countries and territories to submit requests to ICANN for a 
limited number of IDN ccTLDs representing their respective country or territory names in 
scripts other than US-ASCII characters.  

The new generic Top-Level Domain (gTLD) Program5, approved in June 2011 and opening for 
applications in January 2012, will allow for the first time the addition of IDN gTLDs into the 
root zone. 

2.1  The Variant Issues Project 
IDNs can serve as powerful tools for broadening the Internet's capacity and 
accessibility; however, for a good user experience they also raise unique issues. One 
important issue concerns the use of "variants," which, according to one technical 
definition, occur when a single conceptual character can be identified with two or 
more different Unicode Code Points.6 TLDs containing one or more such characters 
might be considered “variant TLDs,” and unless carefully implemented, might result 
in user confusion or a poor user experience.  While the concept of “variants” is 
raised in a number of contexts, and in some cases is regarded as critical for the 
successful adoption of IDN TLDs to meet user needs, there is no single definition or 
rule for determining whether TLDs can be considered variants of one another. 

In an effort to develop potential solutions for the delegation of IDN variant top-level 
domains (TLDs), the ICANN Board in 2010 passed a resolution directing the 
development of a preliminary report on the viability, sustainability and delegation of 
IDN variants.7   

                                                           
4 http://www.icann.org/en/topics/idn/fast-track/ 
 
5 http://newgtlds.icann.org/ 
 
6 http://www.rfc-editor.org/rfc/rfc3743.txt 
 
7 The Board resolution provided that “The CEO is directed to develop (in consultation with the board 
ES-WG) an issues report identifying what needs to be done with the evaluation, possible delegation, 
allocation and operation of gTLDs containing variant characters IDNs as part of the new gTLD process 

http://www.icann.org/en/topics/idn/fast-track/
http://newgtlds.icann.org/
http://www.rfc-editor.org/rfc/rfc3743.txt
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The IDN Variant Issues Project plan was published in April 20118, along with a call for 
volunteers, and work commenced shortly thereafter.  Six script case study teams 
(Arabic, Chinese, Cyrillic, Devanagari, Greek, and Latin) worked to identify the set of 
issues that, if resolved, could enable the delegation of IDN variant TLDs for the 
benefit of the respective user communities.  The case study teams comprised a total 
of 66 experts from 29 countries and territories, and offered expertise in the areas of 
DNS, IDNA, linguistics, security & scalability, policy, registry/registrar operations, and 
community representation.  The case study team reports were produced on 
schedule and published for public comment in October 2011.9  (An overview of the 
script case studies, and a brief description of some of the characteristics of these 
scripts, are provided in Appendices 3 and 4, respectively). 

ICANN, assisted by a coordination team comprised of representatives from the case 
study teams, has worked to build on these team reports to develop this integrated 
issues report, to cover both common issues germane across the cases studied and 
issues particular to specific cases.  An integrated analysis of the issues associated 
with IDN variant TLDs will be an important milestone toward considering 
subsequent work in this area. 

2.2 Objectives of the Integrated Issues Report 
As detailed in the project plan, this issues report is intended to describe each of the 
general and case-specific issues to be resolved for the cases studied.   

In accordance with the scope defined for the project, the following objectives have 
been established for this issues report: 

 
• Identify the set of issues relevant to all the studied scripts. 
• Identify any sets of issues relevant to only some of studied scripts.  
• Provide a brief analysis of the issues, including the benefits and risks of 

possible approaches identified. 
• Identify areas where further study or work could be pursued. 

                                                                                                                                                                      
in order to facilitate the development of workable approaches to the deployment of gTLDs containing 
variant characters IDNs. The analysis of needed work should identify the appropriate venues (e.g., 
ICANN, IETF, language community, etc.) for pursuing the necessary work. The report should be 
published for public review.”  See http://www.icann.org/en/minutes/resolutions-25sep10-
en.htm#2.5 
 
8 http://www.icann.org/en/announcements/announcement-20apr11-en.htm 
 
9 http://www.icann.org/en/announcements/announcement-4-03oct11-en.htm 

 

http://www.icann.org/en/minutes/resolutions-25sep10-en.htm#2.5
http://www.icann.org/en/minutes/resolutions-25sep10-en.htm#2.5
http://www.icann.org/en/announcements/announcement-20apr11-en.htm
http://www.icann.org/en/announcements/announcement-4-03oct11-en.htm
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2.3 Scope of the Integrated Issues Report 
As noted above, this report is designed to provide a review of issues concerning the 
delegation of IDN variant TLDs.  Other related issues are discussed in the report to 
the extent they are relevant. 

It is important to note that there are a number of scripts not represented by the six 
case studies.  In addition, as noted by several of the teams in their reports, some of 
the scripts studied are used to represent a number of languages, and not all of those 
languages were represented on the case study teams.  Similarly, none of the teams 
specifically included experts on typography or on human cognition, even though 
those topics might be important for this subject matter.  Accordingly, all possible 
cases have not been analyzed, and this work is not being represented as 
comprehensive of all potential issues.  However, it is expected that this project’s 
gathering of DNS, operations, and language expertise for these scripts is relevant to 
a significant percentage of the world’s Internet users, and will be an important 
milestone in the work in this area. 

Devising variant rules and proposing variant management solutions are not within 
the scope of this report.  In some instances, a range of possible solutions are 
considered and analyzed with a view toward informing potential later phases of the 
project that would be focused on solutions. 
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3 Range of Possible Variant Cases Identified 
One of the central concerns of this report is to identify possible variant issues that have been 
raised within the six script case studies. In the light of concrete knowledge of the scripts, the 
case study teams have been able to provide in-depth exploration of the relevant problems 
presented by each script. These can be understood most effectively if they are brought 
under a system of classification which draws attention to their similarities, but also to their 
specific differences.  

3.1 Classification of Variants as Discovered 
A classification is here proposed to create a framework for understanding of the 
issues, as well as to suggest common features that may cause a variant case to 
occur, and which may inform consideration of how such a case could be 
incorporated in a variant management mechanism. 

This classification is fundamentally semiotic: that is to say, it is based on the formal 
details of the notations employed by the different scripts, and the rules governing 
their use. The policy justification for interest in these cases lies elsewhere, in the use 
made by various communities of the scripts, and particular dangers (e.g., of user 
confusion) that may attend this use. These communities, however, are extremely 
diverse, not only in their existing capabilities and experiences, but also in the diverse 
relationships of national and dialectal groups to use of their own scripts. Making a 
semiotic classification is the only way to be sure of addressing the common 
properties of all the scripts. 

For the purposes of this section, although “variant” has not been defined, a working 
definition of “exhibiting some relationship such that one of the variants may, under 
some circumstances, somehow be conflated with another” is used.  Although 
imprecise, it captures the central sense common to all the ways the term appears to 
be used with respect to DNS names. 

Fundamental to the classification are some basic distinctions. First of all is a 
distinction between code point variants, where a single character is in some way 
closely related to – or likely to be confused with – an alternative, from whole-string 
variants, where the token at issue is longer than a character, and may be a 
morpheme, a full word, or even a phrase, some meaningful element in a language 
that uses the script. 

In Nenets, the letter ӈ EN WITH HOOK (U+04C8) may vary with the digraph нг EN + 
GHE (U+043D + U+0433): this is a code point variant.  In Greek, Πειραιάς and 
Πειραιεύς refer to the same city, Piraeus: these are whole-string variants. 
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3.1.1 Code Point Variants 
We treat as code point variants those cases where a single character is at variance 
with another character or a short sequence, such as a digraph or a trigraph. The 
essential element is that the variance is at character level, i.e. within the writing 
system, rather than in the relations of particular words.  

Within the code point variants, it is important to distinguish the exchangeable from 
the visually similar. An exchangeable variant is a case where two or more characters 
or code points are seen by a user as so closely related that they may fill the same 
role in a domain name label. The user, in some or all cases of their use, is indifferent 
between them, and so the system must recognize that they are – on occasion at 
least – non-distinct. A visually-similar variant is a case where two or more glyphs are 
so much alike that one may be mistaken for the other. The vagaries of font choice, 
point size and rendering mean that these cases are not entirely foreseeable, but in 
general it can be identified where caution is required. 

It is entirely possible that a variant character may be both exchangeable and visually 
similar with another character.  Since these two types of cases are likely to be 
supported differently, for these cases, attention must be given to overlap and 
precedence of policies. 

3.1.2 Whole-String Variants 
It would also be possible to identify whole-string variants which are purely syntactic, 
having to do with strings of characters and their order, perhaps re-ordering them or 
transforming them in some other way, but without bearing on meaningful linguistic 
elements (for example, Pig Latin  Igpay Atinlay). These would be classed, in 
principle, as whole-string variants. 

Note the case of code points like tónos in Greek, or zero-width non joiner (ZWNJ 
U+200C), a control character that is used in the spelling of Devanagari or some 
Arabic script-based languages such as Farsi and Urdu. These have effects on the 
rendering of a string as a whole -- either (as with tónos) because there can only be 
one of them in a word, or (as with ZWNJ) because they might be invisible in their 
effects on the word’s rendering, except in one crucial locus. Nevertheless, they are 
not classed here as creating whole-string variants. Instead, it is envisaged that such 
elements would stand in alternation to the absence of those elements: a TLD 
containing such an element would trigger a variant label which would be the same 
string but without the tónos or ZWNJ.  

Linguistic variants make up the most significant part of whole-string variants: this is 
where the variant relationship would hold between elements of particular languages 
(e.g., prefixes, suffixes, words, or phrases). In principle these could hold within a 
given language, or as relations between the words of different languages (as 
translations, or historical etymologies). It will be seen that the main concrete case 
which has arisen in the case studies concerns linkage of elements of different 
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dialects (or registers) of a single language (specifically Greek) as variants.  Hence the 
particular note of dialectal variants within linguistic variants. 

 

Figure 1:  Graphical representation of variant cases identified in the case studies 

3.2  Taxonomy of Identified Variant Cases 
The broad types of cases described above can be further organized into a taxonomy 
of specified classes. 

This taxonomy relies on the concept of abstract characters that may entail some 
difficulties of interpretation.  The Unicode standard represents a compendium of 
code points that can be used to represent abstract characters.  Along with each code 
point is a textual description that refers to the superficial graphical features of each 
code point, as well as an illustrative depiction that indicates how the code points 
could be rendered.  One code point may be used to represent more than one 
abstract character, and one or more code points may be used to represent the same 
abstract character.10  The glyphs that are used to render abstract characters will 
result from a combination of the code points used, and rendering rules that are 
outside the scope of the Unicode standard, typically contained in the instructions 
within individual font files. 

Recognition of abstract characters is often implicit based on the resulting rendering 
from the combination of code points, a font’s glyphs, and the rendering rules 
applied.  An application of the linguistic understanding is required to discern 
contrast in these abstract characters, based on analysis of the language in question. 

                                                           
10 It appears that the Unicode standard does not intend the same code point to correspond with more 
than one abstract character; but because the term ‘abstract character’ is itself not perfectly clear, 
some interpretations will regard two different abstract characters as being implemented with the 
same code point.  An example might be the MODIFIER LETTER APOSTROPHE, U+02BC, in its use in 
very different languages. 
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A term which comes closer to the linguistic understanding of “character 
representing a single phone within a language” is the conceptual character. In RFC 
3743 (often called “the JET Guidelines”), "variants" are said to be the situation 
“wherein one conceptual character can be identified with several different Code 
Points in character sets for computer use.”11 It is not, however, further defined. 
 
The presumption is that, within a language, every abstract character corresponds to 
a single phoneme or grapheme (or in UniHan a single sememe, i.e., an interpretable 
meaning, usually with determinate phonic pronunciations). However, although a 
single character may be consistent within a language, as between languages it may 
represent very different phonemes, graphemes and sememes. Consider, e.g., “a” in 
English and Spanish spelling, which are pronounced very differently; standard and 
swash kaf in Sindhi and Arabic languages, which marks a linguistic contrast in one 
language but is stylistic in the other; and as a representative Chinese character, 人 
(U+4EBA) has a basic meaning ‘human being’, but in Chinese is pronounced rén and 
in Japanese jin, nin, hito etc.; each language then uses it with different (but 
overlapping) combinatory properties. 
Nevertheless, the Unicode doctrine is that abstract characters are what is encoded. 
“When an abstract character is mapped or assigned to a particular code point in the 
codespace, it is then referred to as an encoded character.”12  And in practice, 
“abstract character” is a concept that is needed and is reasonably clear within a 
given language, giving a sense of an underlying unity in cases where code points 
seem to have been multiplied beyond necessity, in the process of defining Unicode. 

The classes described are identified using the cases of 1, 2, and 3 based on Figure 1 
above, and references used in the examples are to the corresponding sections in 
that team’s case study report.   

                                                           
11 http://www.rfc-editor.org/rfc/rfc3743.txt  
 
12 See http://www.unicode.org/versions/Unicode6.0.0/ch02.pdf. 
 

http://www.rfc-editor.org/rfc/rfc3743.txt
http://www.unicode.org/versions/Unicode6.0.0/ch02.pdf
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Arabic Chinese Cyrillic Devanagari Greek Latin 

1.  Exchangeable but not Visually Similar 

1(a).  Compatibility mappings 

  

Rarely used 
character/sequence of 
characters, e.g., EN 
WITH HOOK (U+04C7 / 
U+04C8); EN + GHE 
(U+043D U+0433) (3.5); 
C WITH ACUTE 
(U+0107) / C + J in 
Montenegrin (U+0441 
U+0301) (9.1) 

Homophonous spellings 
(4.2)  

(Discussed for Swedish 
and German umlaut in 
6.3) 

1(b).  Join-control characters 

Discussion of ZWNJ 
issues (5.21)   

EYELASH RA in Nepali 
represents a different 
phoneme from RA, and 
is currently only rep’d 
by combination of RA 
with VIRAMA and ZWJ 
(U+0930 U+094D 
U+200D) (4.3.1). 
Correct spelling of 
inflected forms in 
Nepali requires use of 
ZWNJ (4.3.2)   
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Arabic Chinese Cyrillic Devanagari Greek Latin 

1(c).  Upper/lower case and underspecified information 

Optional diacritics 
(notably vowels) (6.4) 

Instances where one SC 
corresponds to one or 
the other of many TC, 
often context 
dependent (2.1 final 
para.) 

IE/IO in Russian (3.1); 
SMALL LETTER I WITH 
GRAVE (3.3);   

TONOS may be absent 
(11) Case folding (6.3) 

1(d).  Positional Variants 

(Discussed in 7)    
SIGMA and FINAL 
SIGMA (5, 12)  

1*2. Exchangeable and Visually Similar 

1*2(a). Same abstract character with more than one encoding 

Identical: 
decomposables, esp. if 
not normalized (6.1)  

6.1 Appendix A.2 (A.2.1 
– A.2.2) 

Non-identical: Generic 
variant characters (5) 

Identical: 
decomposables, esp. if 
not normalized (3.8)   

SMALLER TURNED E 
(U+01DD), SMALL 
LETTER SCHWA 
(U+0259) (6.2) 

(Discussed at 6.5: 
Precomposed 
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Arabic Chinese Cyrillic Devanagari Greek Latin 

characters) 

(Discussed at 6.4: 
decorative and 
contrastive variants) 

1*2(b). Same abstract character differently rendered in some contexts 

KAF Group, HEH Group, 
and YEH Group 
(6.1.abc), MARBUTA 
Group (6.1g) HEH with 
HAMZA Group (6.1h) 
NOON Group (6.1j); 
KAF Group, YEH Group, 
YEH with HAMZA 
Group; variants of dot 
orientation (all in 6.2) 

6.1 a thru k – Appendix 
A.1 

        

1*2(c).  Different abstract characters, but exchangeable for users 

6.3 a thru d 

vowels with/without 
HAMZA (U+0621), All 
forms of ALEF (e.g., 
U+0627) with/without 

 

 

Simplified characters 
(SC) / Traditional 

GHE/GHE WITH 
UPTURN (U+0433, 
U+0491) in Ukrainian 
(3.2);    
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Arabic Chinese Cyrillic Devanagari Greek Latin 

composed form 
(6.3ab); TEH MARBUTA 
(U+0629) and HEH 
(U+0647) (6.3c); Arabic-
Indic and extended 
Arabic-Indic digits 
(6.3d) 

characters (TC) (5) 

1*2(d). Special characters 

  
APOSTROPHE (U+02BC) 
in Ukrainian (3.6) 

MODIFIER LETTER 
APOSTROPHE (U+02BC) 
/ zero in Boro/Dogri/ 
Maithili languages (3.4)  

(Discussed at 6.7: 
Punctuation: Latin 
characters incorrectly 
substituted for 
APOSTROPHE) 

2. Visually Similar, but not Exchangeable 

2(a). Simple Visual Similarity 

 

Non-identical: 
GHAIN/FEH Group, 
QAF/AIN with 2 DOTS 
ABOVE Group, 
AIN/FEH/QAF with 3 
DOTS ABOVE Group 
(6.2) 

6.2 Appendix B2 and B3  

Old Letters, e.g., 
YAT/SEMISOFT SIGN 
(U+048C / U+048D) 
(3.4); ZE (U+0437) / 
DIGIT THREE (U+0033) 
(3.7); various forms of 
GHE, KA and EN (e.g., 
U+0433, 0491, 0493, 
U+043A,049B, 049D, 
04A3, 04A5)  (3.9); 

GHA (U+0918) / DHA 
(U+0927); BHA 
(U+092D) / MA 
(U+092E) etc (3.2.1 + 
Appx III); composite 
characters 
DGA/DNA/DRA etc. 
(3.2.2 + Appx IV); 
Potential mistaken 
characters due to 
rendering errors, 

 

(Discussed at 6.6: 
combining marks)  

(Discussed at 6.7: 
Punctuation: Latin 
characters confusable 
with APOSTROPHE) 
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Arabic Chinese Cyrillic Devanagari Greek Latin 

Appx I passim environmental 
restrictions (3.3.1) 

2(b).  Inter-script 

  

Especially of concern 
for WHOLE-SCRIPT 
CONFUSABLE strings 
with Greek and Latin (4) 

Especially of concern 
for WHOLE-SCRIPT 
CONFUSABLE strings 
with other Brahmi 
scripts, e.g. Gujarati 
(3.5, 4.1) 

Especially of concern 
for WHOLE-SCRIPT 
CONFUSABLE strings 
with Cyrillic and Latin 

(Discussed at 6.1, 7)  

Especially of concern 
for WHOLE-SCRIPT 
CONFUSABLE strings 
with Greek and Cyrillic 

3.  Linguistic variants 

    

Equivalence between 
corresponding words in 
Dimotiki and 
Katharevousa dialects 
(13)  

 

Table 1:  Range of Variant Cases Identified in Case Study Team Reports 
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3.3 Discussion of Variant Classes 
Unicode typically assigns a unique code point to what it recognizes as an 
“abstract character” (i.e., a unit of information used for the organization, 
control, or representation of textual data). (In practice, the glyph is whatever 
is rendered, being sensitive to fonts, resolution, or other issues.)  This 
classification considers cases where this one-to-one correspondence fails for 
some reason. 

Class 1.  Exchangeable but not Visually Similar 

Class 1(a).  Compatibility mappings 

By this is meant cases where, within a particular language’s spelling system, a digraph or 
trigraph (sequence of two or three letters) is taken as a conventional equivalent for 
another letter (usually with a rather rare and distinctive form). The compatibility 
referred to here is backwards-compatibility, as when a new (more exact) representation 
is explicitly kept equivalent to an old make-do representation. 

An example would be the homorganic syllable-final nasal (anusvara) in Hindi 
representing a nasal consonant before a following syllable-initial consonant (e.g., writing 
ambā, hindī gaɳgā as “ãbā, hĩdī, gãgā,” as is normal in Devanagari). These are the 
“homophonous spellings.”  

If any of these equivalences are directly represented in the root, the effect will be to 
impose this equivalence on all languages which use the given script, because a single 
rule for processing them all will be necessary.  See section 4 for a discussion of this 
issue. 

Class 1(b).  Join-control characters 

There are certain code points (notably ZERO WIDTH NON-JOINER, U+200C, “ZWNJ”; and 
ZERO WIDTH JOINER, U+200D, “ZWJ”) which, under the rules of the IDNA Protocol, may 
only be inserted in positions in a label that should trigger a particular effect on 
rendering.  

For Arabic script, this is instantiated at length in 5.21 of the Case Study. 

In Nepali, the “eyelash ra,” a separate character from “ra,” but not represented by a 
separate code point is rendered through the insertion of VIRAMA (U+094D) and ZWJ 
(U+200D).  Showing the presence of a morpheme-boundary in a noun may be rendered 
through the insertion of ZWNJ (U+200C).  
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Class 1(c).  Upper/lower case and underspecified information 

While DNS labels are comprised of octets and can hold any octet desired, they are 
defined in RFCs 103413 and 103514 such that they treat ASCII in a special way.  While the 
DNS preserves ASCII case differences, the difference is not considered in the matching 
rules.  For instance, the label “example” in the DNS is supposed to be preserved just as 
entered in the authoritative zone file during transmission and caching, and also the label 
“ExAmple” is also supposed to be so preserved.  These two labels, however, could not 
both be in the same zone for the same resource record, because for the purposes of 
matching they are the same. 

The IDNA Protocol uses a different rule:  a code point must be stable under both 
Normalization Form KC (“NFKC”)15 and case folding operations to be a protocol-
permitted code point (see RFCs 589216 and 589417).  Therefore, upper-case characters 
in scripts that use them (Latin, Greek, and Cyrillic) are not allowed in U-labels – even if 
the character would have the difference preserved in a traditional LDH label (to use an 
artificial example from above, the string “ExAmplé” is not a valid U-label, because of the 
two upper-case characters E and A.  This means that a case distinction that is present in 
usual Latin/Greek/Cyrillic text is routinely neutralized in U-labels and hence IDN TLDs.    

Class 1(d).  Positional variants 

In Greek, the positional form of lower-case s (sigma) occurring finally in a string has 
been assigned a separate code point [<ς> (U+03C2) not <σ> (U+03C3)]. Nonetheless, it 
clearly represents the same conceptual character, and in upper case <Σ> shows no 
variation.  

                                                           
13 http://www.rfc-editor.org/rfc/rfc1034.txt 
 
14 http://www.rfc-editor.org/rfc/rfc1035.txt 
 
15 Normalization is a mechanism for making different strings – in this case Unicode strings – match one 
another under the right circumstances.  A complete outline of Unicode normalization is beyond the scope 
of this document, but it is a critical part of the way IDNA operates.  A large number of potential problems 
in IDNA are solved because of the normalization rules.  To understand Unicode normalization, see 
“UNICODE NORMALIZATION FORMS,” UAX15, http://www.unicode.org/reports/tr15/.  For details of how 
Unicode normalization interacts with IDNA and U-labels, see RFC 5892, especially section 2.2 
(http://www.rfc-editor.org/rfc/rfc5892.txt) and RFC 5890 (http://www.rfc-editor.org/rfc/rfc5890.txt), 
especially the definition of U-label. 
 
16 http://tools.rfc-editor.org/html/rfc5892 
 
17 http://tools.rfc-editor.org/html/rfc5894 
 
 

http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.unicode.org/reports/tr15/
http://www.rfc-editor.org/rfc/rfc5892.txt
http://www.rfc-editor.org/rfc/rfc5890.txt
http://tools.rfc-editor.org/html/rfc5892
http://tools.rfc-editor.org/html/rfc5894
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Class 1*2. Exchangeable and Visually Similar 

Class 1*2(a). Same abstract character with more than one encoding 

This case is a clear example that many composite characters (e.g., vowels and consonant 
signs that carry diacritic marks, such as <é>, <ā>, < ç>) have more than one 
representation as code points, namely, as pre-composed wholes, and as the simple 
letter with a separate combining diacritic.  This occurs in Arabic, Cyrillic and Latin.  Many 
of these cases (including some that were raised in the case study reports) do not bear 
on IDNs, because they do not qualify as valid U-labels according to the IDNA standard.  
Where there are different standard ways of encoding the same abstract character as 
precomposed and decomposed forms, IDNA will allow only one form, and thus user 
interfaces and preprocessors are free to map all other forms into the preferred form.  
For example, the letter “o” with a circumflex accent can be written in more than one 
way:  by using LATIN SMALL LETTER O, U+600F and COMBINING CIRCUMFLEX ACCENT, 
U+0302; or by using LATIN SMALL LETTER O WITH CIRCUMFLEX, U+00F4.  After 
normalization, the string is the same code points (in this case, the latter, precomposed 
form).  There are nevertheless some cases where normalization does not completely 
cover the range of potential inputs.  Extensive examples are in the Arabic script case 
study report, Appendix A.2.1 wherever it says “not defined;” the failure of normalization 
also contributes to the example of Eyelash Ra outlined in the Devanagari report, section 
4.3.1.  See the discussion of ZWJ as well. 

A rarer case is where the rendering assigned to distinct code points turn out to be 
indiscernible. It is unclear in these cases whether there is more than one abstract 
character involved: in any case, the variants do not contrast with one another, and it is a 
matter of indifference, in ordinary use, which one is intended. There is, however, a 
security danger in code points which are distinct, but invisibly so, because two strings 
that differ only in the substitution of the invisibly-different code point are completely 
indistinguishable to a human (competent with the script in question) but are 
nevertheless different labels and so lead to different DNS names. 
 
This is the case of Chinese generic variant characters (often resulting from the 
unification of sources to create UniHan), but also of the two ways of expressing ‘turned 
e’ or ‘schwa’ in Latin script (U+01DD and U+0259).  

The decorated characters in Latin provide many examples of distinct (sets of) code 
points which represent the same characters, although the Latin report (with one 
exception) recommends banning them all from use in TLD labels. 
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Class 1*2(b). Same abstract character differently rendered in some contexts 

These are like the cases in 1*2(a), but differ in that the contrasting code points only 
have differing forms in some contexts. “Context” here can mean either a linguistic 
context (the letter’s position next to others in a string), or else regional context, where 
the way that users treat the writing system differs between languages.  For use of such 
code points in a TLD label, however, a common set of rules on such variant characters 
must be maintained. 

This case frequently occurs in the language written in Arabic script, where the different 
positional forms may represent what are historically different ways of writing a single 
given character (but have been given varying code points in Unicode).  For example, the 
letter YEH is represented with U+064A in Arabic language, but U+066C in Iranian 
languages such as Persian, causing a different incidence of the letter’s distinctive two 
dots. 

Conversely, different forms of a character in Arabic script are displayed depending on 
where they appear in the word (initial, medial, final and isolated), but all are generated 
by renderings of the same character (i.e., using a single code point). Given that the 
separate codings for the positional variants (U+FB50-FBFF), which were once available, 
are disallowed by the IDNA 2008 protocol, it will be impossible to make them variant 
characters, since they have no identity as separate characters. 

 Class 1*2(c).  Different abstract characters, but exchangeable for users 

The classic case is the Chinese equivalence between Simplified and Traditional 
characters. These are defined as quite separate code points and hence (prima facie) 
separate characters. Yet in terms of their contribution to writing particular words, there 
is no difference between the members of a corresponding Simplified-Traditional pair of 
characters. The only way to make them contrast is to talk about the actual form or 
identity of the characters themselves, rather than what they mean or how they sound. 
 
In Arabic script, many combinations of ALEF with and without HAMZA above and below 
are assigned their own separate code points: they are distinct from each other, but the 
conventions of the Arabic language (and some other languages’) spellings allow the 
forms of ALEF with and without HAMZA above and below to be equivalent.  In other 
languages that use Arabic script, this equivalence is not present. 

Class 1*2(d). Special characters 

There is a requirement expressed across languages for characters which are in a block of 
code points distinct from those reserved for the relevant scripts: e.g., the apostrophe 
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character used in Cyrillic for Ukrainian and Belarusian (U+02BC); the apostrophe 
character used in Devanagari for Boro, Dogri and Maithili (likewise U+02BC).  

The presence or absence of such characters in the spelling of specific names and words 
is not straightforward.  Because of the characters' status outside the regular code block 
for the script, the prospects for their routine use are unclear. If both presence and 
absence of these characters are ruled as acceptable spellings in TLD labels, names and 
words where these characters are used will become thereby open to use as variant 
labels. 

A further problem is that many of these characters (e.g., the various “apostrophes” – 
U+0027 APOSTROPHE, U+02BC MODIFIER LETTER APOSTROPHE, many others in the 
codeblock 02A0-036F, as well as U+A78B LATIN CAPITAL LETTER SALTILLO and U+A78C 
LATIN SMALL LETTER SALTILLO etc.) all have very similar small forms, and are visually 
confusable.  Some of these characters, such as U+0027 APOSTROPHE, are not permitted 
at all in U-labels. 

Class 2. Visually Similar, but not Exchangeable 

Class 2(a). Simple Visual Similarity 

These cases are self-explanatory. Glyphs are not sufficiently distinct to represent reliably 
their associated code points (nor abstract characters). 

For discussion of their treatment within a variant framework, see section3.4. 

Class 2(b).  Inter-script 

If labels are to be restricted to a single script, the only case of this is the whole-script 
confusable case. It is expected that there will be mechanisms to detect these, and block 
them where necessary.  There is a bigger issue to consider if labels are to be constructed 
out of sets of code points not restricted to those sharing a single script property; see the 
discussion in section 4.1 for some alternatives. 

For discussion of their treatment within a variant framework, see section3.4. 

Class 3.  Linguistic variants 

This raises a different set of issues from the character substitutability cases just 
considered. Potential variants are whole strings (usually words) rather than single 
characters within a string. 

For discussion of their treatment within a variant framework, see section3.5. 
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3.4 Visual Similarity Cases 
 The cases described in class 2 (and possibly 1*2) above concern visual similarity of 
 characters.  Issues concerning these cases are considered in this section. 

3.4.1 Treatment of Visual Similarity Cases 
As discussed in section 3.2, there are certain cases where the only factor creating a 
possible variant relationship is that a character is visually confusable18 with another.  

No unified user expectation on how to handle such cases emerges from the case study 
reports.  Some highlight the need to delegate a visually confusable variant label along 
with the applied-for label; others advocate that such variant labels should only be 
blocked.  

Since visual similarity is not only limited to variant cases, in the new gTLD Applicant 
Guidebook, a string similarity review process is established with the objective of 
preventing user confusion and loss of confidence in the DNS resulting from delegation of 
many similar strings. As used in the Guidebook, “similar” refers to strings (labels) so 
similar that they create a probability of user confusion if more than one of the strings is 
delegated into the root zone.  
 
To consider how to treat cases of pure visual similarity, it is useful to recall the 
assumption stated in section 1.1:  

Given that experience in this area is limited, and actions taken will create 
precedents and outcomes that cannot be undone, variant TLD labels should be 
narrowly defined, and restrictive rules for active use of variant labels in the DNS 
should be adopted.  Wherever possible, instead of adding a new type of variant 
TLD label, an alternative approach should be used – for example, using an 
existing ICANN evaluation or objection process that delivers an appropriate way 
of blocking undesired TLD strings.  If there is a process already in existence that 
delivers a similar result to what is desired, that process should be used rather 
than establishing a new type of variant label.   

Building on this assumption, it follows that variant cases where the only determining 
factor is visual confusability with another label should be subject to blocking, at least in 
the initial stages.  The existing visual similarity processes should be able to address these 
cases.  It is noted that a desired outcome, as expressed by different communities, is 
predictability in the handling of visual similarity assessments.  It seems that for some 

                                                           
18 In this context “visually confusable” refers to two different strings of Unicode characters whose 
appearance in common fonts in small sizes at typical screen resolutions is sufficiently close that people 
easily mistake one for the other. 
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script communities, it is possible to produce a table that would be able to generate 
these visually similar variants deterministically. Thus, existing visual similarity processes 
could potentially be improved by incorporating these tables from the script 
communities.  It may also be possible to modify or extend the zone generation rules 
suggested by this report to support determinations of visual similarity; see section 4.1 
for further discussion.   

3.4.2 Cross-Script Visual Similarity 
The cases discussed in Class 2(b) above concern the similarity of characters across 
scripts.  Cross-script visual similarity is possible, especially among Cyrillic, Greek and 
Latin scripts (e.g., peace (Cyrillic:  U+440, U+435, U+430, U+441, U+0435) and peace 
(Latin:  U+0070, U+0065, U+0061, U+0063, U+0065) but also as between Devanagari and 
closely related Brahmi scripts (e.g. Bangla, Gurmukhi).  It is possible for two candidate U-
labels to appear to be the same in different scripts.  Even excluding Unicode properties 
like Common and Inherited, it is possible to create two IDNA-valid strings in two 
different scripts where competent users of each script are likely to regard the two 
strings as the same one.  This issue is highlighted in some team reports as "whole-script 
confusables,” which is also what a similar phenomenon is called by Unicode. 
 
As discussed in section 3.3, this can be treated as a straightforward matter of string 
similarity.  Note that, because this is an issue of component code points being 
confusable with one another, it is distinguished from the whole string issues discussed 
in section 3.5 below.  The Greek case study team report recommended that a joint 
effort considering similarities in Cyrillic, Greek, and Latin characters could be pursued.   

3.4.3 Terminology concerning Visual Similarity 
This section focuses on issues related to the acceptability and use of Unicode characters 
for TLDs; hence we do not seek to adopt terms that are more generally relevant to the 
relation between symbols and meanings.  
 
One such term is homograph, which means an “entity sharing a written form with 
another entity.”  This term is ambiguous as to the level of the entity, referring to distinct 
characters which happen to have a similar written form just as much as it refers to 
distinct words written in the same way (e.g., lead, rose in English).  
 
If so used, homograph makes a false analogy between the relation of glyph to the 
character it represents and the relation of a character-string to the label, name or word 
it may represent. It is to be avoided for that reason. 
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Homograph is, in fact, usually applied at the word level. The term has a well-established 
definition as being a relation of words within a language. In this use, it does not extend 
across language/script boundaries.  
 
By contrast with homograph, a homoglyph refers only to the situation where multiple 
abstract or conceptual characters (and usually their multiple associated code points) are 
represented with the same glyph. This term is independent of language and/or script. It 
can be applied to similar glyphs within the same language or script. However, it can also 
be applied to two elements that cause confusion between languages or scripts. Hence, 
the glyphs with the shapes “a, e, c, p, x” (and in some italic fonts “g, u, m, n” too) are 
homoglyphs, as between Latin and Cyrillic.  
 
The value of using the term homoglyph within the variant discussion is dubious. It 
focuses on the possible multiplicity of interpretations of a single glyph (or set of similar 
glyphs) without considering the actual danger of confusion this causes, or the degree to 
which users are indifferent to the difference between the interpretations, leading them 
to exchange them freely. 
 
For this reason, the report uses the terminology “visual similarity,” which is not 
specifically restricted as to length of string of glyphs (one or many), or degree of 
similarity between glyphs in view (absolute or approximate). 

3.5 Whole-String Issues 
The cases described in Class 3 above concern a variant relationship between two or 
more whole strings of characters.  As opposed to code-point level variants (in which the 
locus of difference lies in individual code points within a string), whole-string level 
variants would set whole strings (including potential DNS labels) in contrast.  This 
section considers cases of this kind and the likely impacts of their implementation in the 
root of the DNS. 

From the types of whole-string variants, the linguistic variants subtype would seem 
interesting to some users given that it appeals to some part of the rule-set of a 
language, whether its orthography, its phonology, its grammar or its lexicon.  

However, linguistic variants present a difficulty, in that the rules that define them 
cannot be represented as well-defined automata, since generalizations within and 
between languages are subject to arbitrary exceptions, as well as being hard to define 
formally, at any level of abstractness. 

Examples of what might be considered linguistic variants include: 
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1. Transcriptions (e.g. Ευαγγελία (Greek) and Evangelia; 网络 (Simplified Chinese) and 

wang luo (Pinyin transcription), which means network in English), which involve 
constructive use of another language’s phonology and orthography to reconstruct 
the effect of an expression’s pronunciation in a given language. 

2. Homophonic strings within a language’s spelling system (e.g., in English too and 
two); this will include different spellings of the same word (lexeme) in the same 
language and script (e.g., in English: color and colour); in the extreme case, this may 
extend to strings representing the same word in the scripts of a multi-script 
language (e.g., in Japanese: ほんだ (Hiragana), ホンダ (Katakana), 本田 (Kanji), 
Honda (Latin). 

3. Corresponding terms in different dialects of the same language, e.g., Ευάγγελος and 
Βαγγέλης, which are accepted forms of what was (historically) the same name (in 
Katharevousa and Dimotiki respectively); diaper (US English) and nappy (UK/AU 
English). 

4. Synonyms within a language (e.g., in English: buy and purchase). 

5. Different identifying expressions within a language (often dependent for their 
interpretation on conventions, or other shared information): these may be personal 
(e.g. Elizabeth II, The Queen, the present queen, the Queen of England, the Head of 
the Commonwealth etc.), geographic (e.g., in English: New York City, NYC, New York 
New York, the Big Apple etc.), or in any other field. 

6. Translated strings and inter-linguistic correspondences: representations of the same 
concept/notion in two languages (e.g., green (English) and vert (French)). 

In this breakdown, it becomes clear that linguistic variant rules are never exhaustively 
and formally predictable, being dependent on equivalences made at various levels (from 
orthography through grammar and meaning to irony) by users of a given language. 

Given the analysis of linguistic variants above, it is clear that some people might want 
(some of) these cases to be considered variant labels. Writing system and spelling 
reforms have also had implications for languages that have at times been written in 
Cyrillic and sometimes also either Arabic or Latin script. Even English has undergone 
significant spelling reforms, such that some words can be spelled more than one way 
(e.g., color and colour) as described above. 

One of these types of cases, "Corresponding terms in different dialects of the same 
language," (3), was recommended for consideration by the Greek case study report, 
such that Katharevousa and Dimotiki strings should be treated as variants to one 
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another:  the registration of one such string would cause the corresponding string in the 
other dialect to be blocked. 

The Greek case study team report noted: 

Alternative, same[-]meaning  words,  if  the  domain  consists  of  words[,] are  to 
be disallowed. This rule is especially put in place to deal with words in 
“Katharevousa” and “Dimotiki.” Dimotiki is the contemporary Greek language, 
where Katharevousa was in use before 1976. However, many word types from 
Katharevousa are still in use in Dimotiki and the user should be protected of 
confusability issues between these same meaning words.  For example 
“Πειραιάς” and “Πειραιεύς” are two names of the same city in Greece, 
respectively in Dimotiki and Katharevousa – The applicant will only choose to 
register one of these and the other one should be excluded of registration. The 
team recognizes the difficulties this procedure presents for automated systems, 
however, since TLD registrations are not expected to be of great volume this rule 
could be implemented with relatively low cost for ICANN.  (p.14) 

The first sentence of this text suggests that the Greek case study group has not made a 
distinction between the requested inter-dialectal equivalence of words from a more 
general synonymy (Cf. 3 vs. 4 in the list above), which would be highly subjective in 
detailed application. Since the recommendation is only for the inter-dialectal 
equivalence, this may not matter. However, even if check-lists of all the relevant words 
and names are available, the relationship may be less neat than is assumed.  Although 
Katharevousa and Dimotiki are largely related formally, this is overall a complex and 
sometimes unruly linguistic relationship.  

A further problem stems from the need to agree a specific fixed list, not only of names, 
but also of every word in the Greek language (onomasticon), and specifically one, which 
specified the Dimotiki and Katharevousa equivalent for each headword (lexicon). 
Besides the need to maintain both of these, there is the further complication that Greek 
is a highly inflected language, and policies would need to be defined on which precise 
parts of each word’s alternations would be recognized. 

The aforementioned paragraph from the Greek team report recommends an outcome 
which would “exclude from registration” the second variant string, i.e., blocking it. The 
gTLD Applicant Guidebook defines two processes that could address this issue in a 
similar way. The String Similarity review described in Module 219 compares any two 
applied-for gTLD strings for visual similarity. If the strings were found to be confusingly 
similar, they would be placed in contention sets for later evaluation and resolution. 

                                                           
19 See http://www.icann.org/en/topics/new-gtlds/rfp-clean-19sep11-en.pdf 
 

http://www.icann.org/en/topics/new-gtlds/rfp-clean-19sep11-en.pdf
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Additionally, the review compares each applied-for gTLD string against existing TLDs. If 
an applied-for gTLD string failed the String Similarity review due to similarity to an 
existing TLD it would not pass the Initial Evaluation. 

Secondly, Module 3 describes the public objection process in which string confusion is 
one possible ground for a formal objection to be filed to a gTLD application.  String 
confusion in this context is not limited to visual similarity of characters; but may be 
based on any type of similarity (including visual, aural, or similarity of meaning).  The use 
of any of these two processes could yield the outcome requested by the Greek case 
study report for the Dimotiki/Katharevousa issue. 

As noted above, linguistic variants are not amenable to algorithmic treatment, because 
the linguistic principles that cause them do not usually exhibit complete regularity. To 
produce a general solution to any general case of linguistic variants (even in a single 
language), it would be necessary to generate (in advance) a dictionary or set of 
dictionaries that would govern the handling of submitted strings; this would require the 
engagement of relevant expertise for each language with linguistic variants. Presumably, 
the dictionaries would need to be reconciled with one another, to ensure that any 
possible conflicts would be dealt with. Since there is no requirement that DNS labels 
actually be words, submitted candidate labels would need to be checked to see whether 
they matched anything in the relevant dictionary or dictionaries, probably including 
checking for substrings in the dictionaries and substrings in the submitted candidate 
label. In the event a match was detected, then zone policy would apply as to what to do 
with the resulting matching label (e.g. to block it, withhold it, or activate it). 

It would be necessary to develop a policy for maintaining the dictionaries. It is not clear 
how ICANN could make effective exclusion rules permitting one type of linguistic 
relationship to be treated as a variant case, but another not to be. It is also not clear 
that the system would be subject to practical automation, given the very large number 
of potential combinations and the likely requirement to perform substring matching. It 
would be necessary to formulate a policy that could accommodate future changes to 
dictionaries, and to formulate a policy that accommodated such changes as to avoid a 
conflict between then-existing root zone entries. Additionally, it seems it would be 
necessary to have a dispute resolution procedure to handle cases where different 
applicants’ desires went unmet. 

The Greek case study does not recommend that dialectal variants be placed in the root; 
but once one has begun to treat them in a way analogous to code-point variants, it 
seems likely that someone will ask that some whole-string variants be placed in the 
root.  Placing any such variants in the root would create indeterminacy in the system, 
and uncertainty for users. If a user knows that linguistic variants (with all their intrinsic 
unpredictability) are part of the system, it spreads the sense that what is typed (or seen 
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on the screen) is not necessarily what others get. This will cause difficulties for users. 
And it may create even greater difficulty than the convenience that others would derive 
in having a facility of linguistic variants.  Such a facility will inevitably be limited, and we 
do not yet know how its limits could be set.  

Ultimately, a decision would have to be made as to whether the cases of linguistic 
variants are better addressed via variant management processes to be created, or via 
existing policies and procedures.  The case studies have revealed differing points of view 
on how these issues should best be resolved. 

3.6 Synopsis of Issues 
The case studies have enabled a common classification of variant types, subject to 
updates from findings concerning other writing systems not covered by the case studies.  
This adds specificity and clarity to considering the variety of potential variant cases and 
how significant they are to particular writing systems.  To create a variant management 
mechanism, the first issue to be solved is how to define and delineate the variant cases 
that may exist.  That is, to create a set of rules for addressing various cases, it must be 
possible to constrain the space such that the problems to be solved are known. 

Many of the issues highlighted here are complex, and it is clear that the cases in the 
script studies vary widely.  The classification exercise undertaken here demonstrates 
that there is not a single “variant problem” to which a solution may be developed, but 
an array of unique characteristics and considerations to be kept in mind in further 
discussions.
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4 Discussion of Issues:  Establishing Variant Labels 
Every DNS zone has, either implicitly or explicitly, a set of rules that governs what labels are 
permitted in the zone.  This often goes by the general rubric “registry policy.”  Some of these 
policies are related to various conditions that must be met before a registration is permitted.  
Some of the policies are rules that govern labels: whether they are permitted, and what effects 
they might have on other candidate labels for the zone.  We call this set of rules the label 
generation rules.  

The label generation rules for the operation of an IDNA-enabled20 zone must, at the very least, 
include the rules constraining which code points are permitted in a U-label in that zone.  (Even 
“everything permitted by IDNA2008” is such a rule; it is not possible to permit U-labels without 
implicitly adopting some rule.)  We call this list the code point repertoire for the zone and, more 
informally, the zone repertoire.  (It is important not to use “repertoire” on its own in order to 
avoid confusion with the meaning of that bare word in the Unicode standards.) In addition, 
whenever there are variant relationships among code points, the label generation rules must 
include the specification of which code points may be used as alternatives for other code points 
(the alternative code points), the status of the label that results from the alternation of the 
code point in question (the code point variant status), and any degrees of freedom with respect 
to the status values.21  We call the set of these last three items the code point variant rules.  
The alternative code points may need a way to specify “substitute by removal”: code points 
such as ZERO WIDTH NON-JOINER (U+200C) and MODIFIER LETTER APOSTROPHE (U+02BC) 
seem at least sometimes to need a variant label that does not contain those code points, to 
permit practical entry under some current user input methods. 

The root is a shared resource, and that means that, all else being equal, ICANN should not 
privilege one group of script or language users over another in the administration of the root 
zone.  Accommodating every desire that everyone might have is a practical impossibility, and 
even ensuring equitable treatment is complicated.  However, it is necessary to have an agreed 
and accepted mechanism for defining zone repertoires and code point variant rules for the root 
that could take into account the needs of every language community that can be supported by 
IDNA. 

                                                           
20 In principle, this is true of non-IDNA zones, too, but as those cases are not directly relevant to the 
present concern, we will ignore them for the purposes of this discussion. 
 
21 There may be more than one way to represent the label generation rules.  For instance, RFC 3743 
defines the repertoire as the list of Valid Code Points.  For a given code point, the alternatives are all listed 
in the Preferred Variant and Character Variant columns of the Language Variant Table.  Those code points 
in the Preferred Variant column are the ones that normally result in a resulting label being activated 
(which means there is less freedom about the status).  Those code points in the Character Variant column 
are ones that normally result in a resulting label not being activated.  RFC 3743 does not provide a 
convenient mechanism to block a label. 
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ICANN must have a way to validate potential IDN variant TLD labels when submitted, and to 
validate all IDN TLDs requested for variant labels and variant conflicts.  By the same token, 
because the root is a single, shared zone, it is necessary to adopt a single, internally consistent 
set of label generation rules that governs the operation of this single zone. It is worth observing 
that, while IDNA2008 determines whether a code point is permitted merely by examining 
Unicode properties (and not by considering code points one at a time), the protocol was 
designed with the explicit assumption22 that registries would add restrictions to the protocol for 
the purposes of registration.  The most natural restriction is to refuse to register code points 
except those needed to write a supported language.  But unlike many other zones, the root 
might need to support any language; that need may entail careful linguistic study of a large 
portion of the PVALID code points in IDNA2008. 

Identification of an appropriate authority for the code point repertoire for the root zone is a 
difficult undertaking.  To the maximum extent possible, the relevant language communities 
need to agree on a shared set of code points for the zone repertoire.  It is not clear on what 
authority ICANN would rest its claim to being able to decide among different candidate zone 
repertoires in the event of a dispute. If, on the other hand, no dispute exists, then it does not 
seem that there would be different candidates for the zone repertoire. 

4.1 Establishing the Label Generation Rules  
A detailed proposal for the label generation rules is beyond the scope of the present 
document.  Such a proposal would properly belong in a proposal for implementation.  
This section outlines the parameters by which the rules might be determined.  

There are three independent factors that need to be considered to build a process to 
generate label generation rules.  These can be thought of as three parameters to be set 
in the process.   

Comprehensiveness.  The first parameter is that of relative comprehensiveness 
(henceforth, “comprehensiveness”).  This parameter establishes the degree to which 
the whole of Unicode (or some relevant Unicode subset) needs to be considered.  The 
maximal setting of this parameter would require that the entire Unicode code space be 
considered in preparing the label generation rules; the minimal setting of this parameter 
would require that a rule be developed for any code point actually requested in any U-
label in the root zone, but that other code points might be ignored.  The maximal setting 
has the conspicuous advantage that it likely makes for the most stable rules: because 
the only additions to the zone repertoire could ever come from Unicode additions.  The 
disadvantage is that Unicode encodes some characters that are extremely obscure, and 

                                                           
22 See http://www.rfc-editor.org/rfc/rfc5891.txt, section 4.3 
 

http://www.rfc-editor.org/rfc/rfc5891.txt
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so it might be difficult if not impossible to find relevant experts.  Also, considerable work 
would be undertaken that might never prove useful (it seems very unlikely that anyone 
will want a TLD spelled using Linear B, for example).  A slightly more relaxed approach 
would be to allow some script tables to be passed over.  The minimal setting has the 
advantage that effort is not wasted on code points nobody wants.  A middle-range 
approach might generate rules for those code points that seem likely candidates for 
requests. 

Expertise.  The second parameter is that of expert authority involvement (henceforth, 
“expertise”).  The maximal setting would require expert development of the rules for 
the set of code points in question, and by a fairly large body of experts with relevant 
knowledge of IDNA and DNS, the scripts and languages in question, writing systems, or 
all of these.  The minimal setting would permit anyone to establish any set of rules they 
liked (with the only constraint being that conflicts would not be permitted, and would 
be resolved in favor of the most cautious action).  The maximal setting has the 
advantage that the rules are more likely to be stable, because the expert study is likely 
to expose important issues and set rules to deal with them.  However, it is not clear how 
ICANN might determine expertise, and a situation where someone was dissatisfied with 
a given result could result in disputes about the legitimacy of one or more experts.  It is 
also possible that governments would desire to participate in the process of setting 
rules for a particular language or script. In addition, many of the Variant Issues Project 
case study reports acknowledged that they were missing relevant expertise on some 
languages using the scripts, and it is not clear how subsequent efforts along these lines 
could attract more expertise.  The advantage of the minimal setting is that it gets ICANN 
completely out of the role of evaluating people’s claims about how their language 
works, but it would appear to invite attacks where someone sets rules designed to 
prevent someone else’s TLD label from being permitted.  It also seems likely to cause 
overall instability of the rules.  A middle-range setting in this case might empanel 
experts to review proposals for rules that were previously solicited, but not require 
them to do all the development themselves.   

Qualification.  The third parameter is that of code point property qualification 
(henceforth, “qualification”).  This determines what would be required for a code point 
to be considered for inclusion in the zone repertoire in the first place.  The maximal 
setting of this parameter requires that a zone repertoire consist only of code points all 
having the same Unicode script property.  The minimal setting of this parameter permits 
completely arbitrary combinations of code points to make up a zone repertoire.  The 
maximal setting has the advantage that it relies entirely on a property already defined 
by Unicode, but one should keep in mind that even LDH labels do not all come from the 
same script (HYPHEN-MINUS U+002D, and all the digits have the script property 
COMMON).  The minimal setting avoids any problems having to do with multi-script 
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writing systems by permitting arbitrary sets of code points; it also allows a script that 
needs but one or two code points from Common or Inherited to use them without 
requiring looking at the entire Common and Inherited ranges.  But this flexibility might 
entail confusing or conflicting rules when more than one language community wants to 
use the same code point in different ways.  Medium-range settings for this parameter 
might include treating Common and Inherited script properties as somehow being part 
of any script under consideration, or else starting with the Unicode script tables and 
then allowing arbitrary build-up of the zone repertoire by restricting the other ranges 
permitted to be considered. 

4.2 Sample Options for Establishing Label Generation Rules 
With these parameters in mind, it might be useful to consider some ways the 
parameters could be set in order to illustrate the range of options that they make 
available.  These examples are not exhaustive; they’re also only sketches, offered to 
provide an intuition about how the label generation rules might get established, rather 
than complete analyses of the different approaches.   

Note that in what follows, “zone repertoire” and “label generation rules” are sometimes 
used informally to refer to the subset of the eventual zone repertoire and label 
generation rules.  By definition, it is impossible to have more than one zone repertoire 
in a zone at one time, because the zone repertoire is just a list of the code points 
permitted in the zone. For practical reasons (as noted above) it is not possible to permit 
inconsistent rules about the handling of code points into the root zone.  

1. Complete generation for every script table to be used, by an expert panel 

This scenario sets the comprehensiveness parameter nearly to its maximal value, 
the expertise parameter to the maximal value, and the qualification parameter to its 
maximal value.  In this scenario, ICANN would select some number of scripts (from 
those already defined by Unicode) it wants to support.  It would convene one expert 
panel per script, and instruct them to build a completely comprehensive set of label 
generation rules for all the code points in the script.  The zone repertoire for the 
root would thereby be established as the set of all and only the code points in all 
those script tables to be studied (except those DISALLOWED by IDNA2008).  Each 
panel would develop the list of alternative code points and associated code point 
variant rules for the relevant script.  Label generation rules would only be needed 
for scripts to be supported in the root zone, though of course it would be necessary 
to establish additional rules on the introduction of a new script.  In the end, a single 
set of label generation rules would be merged from the collective output of the 
different script expert panels.  
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Using this method, code points that are needed by some language, but that are not 
included in the script table used by that language, would not be permitted.   Dealing 
with languages written in more than one script (e.g., Japanese) could be extremely 
tricky.  Since the deliberation is at the level of a script, it would seem necessary to 
require that every code point in a U-label have the same script property as every 
other code point in the U-label.  U-labels in the root zone would not need to have 
any identifying tag, because the script of the label could be derived from the script 
property of any code point in it (and any labels of mixed scripts would not be 
permitted). 

It is not clear what one might do if a script expert panel were unable to come to 
consensus on the necessary rules for every code point in that script.  If consensus 
were required, it would permit a single individual to block registrations for 
everyone.  While we do not have examples of such fractiousness in our work so far, 
how a language is written is often an intensely (politically) fraught question.  

In the event Unicode added or removed a code point from a script already included 
in the label generation rules, it would be necessary immediately to convene a new 
script expert panel to decide what to do about the new code point.  It would be 
critical to prevent any registration with that code point until the panel had ruled, 
and probably necessary to have grandfathering rules for handling already-registered 
labels using code points implicated in new variant rules.  If a code point changed 
scripts -- unlikely but not impossible under the Unicode rules -- then a similar 
immediate convention of the expert script panel would be needed.  (It is worth 
noting that the most common code points available under IDNA2008 have been 
stable for a very long time, and are extremely unlikely to change in this way; all the 
examples are likely to be very rare characters.  To all but eliminate this risk, it might 
be worth adopting a stability criterion so that a code point is ineligible for inclusion 
in the Label Generation Rules unless it has been completely stable in several 
Unicode iterations.  Under this scenario, that would require restriction of the entire 
script; but other scenarios described below might permit restriction of just one code 
point.) 

2. Assemble an expert panel for scripts likely to be desired, and include code points on 
a “best efforts” basis 

This approach lowers the setting of the comprehensiveness parameter, and leaves 
everything else the same.  In this scenario, the scripts are again selected in advance 
by ICANN, and ICANN assembles the relevant panels to develop the rules for the 
script.  The panel, however, need only rule on code points with which it is familiar.  
Code points that the panel does not feel qualified to address would be left out of 
the eventual zone repertoire delivered.  
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This scenario has similar properties to the previous scenario, but differs in 
interesting ways.  The zone repertoire for the root cannot be determined in 
advance, and can be derived only after all the expert panels have reported.  Failure 
to reach consensus on some code point does not completely block progress: the 
panel could leave such a code point out on the grounds that consensus was not 
achieved. 

This scenario also means that applicants for root zone U-labels would need to 
ensure that the code points they intended to use were actually in the zone 
repertoire.  If not, such a potential applicant would need to engage whatever 
process was in place to try to alter the zone repertoire.  During application 
evaluation, ICANN would need to add a step to ensure not only that the script in 
question was one of the permitted ones and that all code points in the U-label were 
in the same script, but also that all the code points were in the zone repertoire. 

This scenario seems likely to reduce the chances of serious issues arising from 
changes in Unicode, because code points that are likely to have any changes are also 
the ones most likely not to be well-understood (and therefore to be excluded from 
the zone repertoire). The set of label generation rules is slightly more likely to 
experience some instability under this approach than under the first, because a new 
participant might ask for changes to the zone repertoire in order to add a code point 
from a script table that has already been studied. 

Because this scenario is likely to require maintenance of the label generation rules 
that is more complicated than simply dealing with new Unicode versions, it might be 
necessary to create some sort of standing expert review panel.  The details for this 
are something to be undertaken in the event of implementation.  ICANN has other 
standing panels designed to ensure expert review of various technical and policy 
matters, and the composition of the label generation rule maintenance panels 
would presumably be determined along similar lines.  The panel, however, would 
need to include expertise in all the relevant languages and scripts, as well as in the 
DNS and IDNA. 

3. Create policies for script-relative lists of code points 

This scenario keeps the comprehensiveness and expert parameters the same as in 
the previous scenario, but lowers the qualification parameter so that zone 
repertoires may be built to extend the Unicode Script Tables.  Because of the 
possible difficulties with “one Script Table” policies, it might be desirable instead to 
permit language communities to specify the code points they want to use to write 
their language.  In this scenario, ICANN would assemble and direct the various 
expert panels for scripts as above, but explicitly permit the panels to extend the 
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script table defined by Unicode with code points from other scripts.  The panel 
would select some group of code points, which we call a representation repertoire, 
as the list of code points to be included in the zone repertoire.  Similarly, the panel 
would determine representation variant rules that would be intended to be part of 
the code point variant rules.  The combination of the repertoire and variant rules is 
called here the representation label rules, and all of these are to be identified by a 
representation identifier.   

This scenario has many of the properties of the previous one, but it does not restrict 
the experts to predefined subsets of the Unicode code space.  Instead, they are free 
to build the representation repertoire from the whole of Unicode.  The expert 
panels might be organized around broad script categories (as the Variant Issues 
Project case study teams were), around a specific language or multiple languages, or 
even across linguistic lines in the event that seemed desirable (e.g., to address 
cross-script Latin/Greek/Cyrillic issues).  Panels would work on code points with 
which they were familiar, and would usually need expertise from all the relevant 
language communities as well as experts in DNS and IDNA. 

Different representation repertoires might include the same code point without 
harm, but it would run against the spirit of this scenario for broad swaths of 
different representation repertoires to include the same code points or be intended 
to be used with the same languages.  The basic goal in this scenario is to produce 
something like the Unicode script tables while still allowing a small number of code 
points to be allowed across scripts; a subsidiary goal is to avoid having to deal with 
the entire Common and Inherited ranges in Unicode.  When the different 
representation repertoires are combined to make a unified zone repertoire, it is 
necessary to include, in that zone repertoire, the representation identifier.  This 
way, when a candidate U-label is submitted for inclusion in the root zone, it can be 
identified which representation repertoire the label is supposed to conform to, and 
it can be checked to ensure that all the code points in the label are indeed covered 
in the representation repertoire.  (A label that did not conform to some such 
representation repertoire would be rejected.) 

It is not clear what one might do if two panels were to set conflicting representation 
variant rules for the same code point.  Some dispute mechanism would undoubtedly 
be necessary; the likeliest approach would be to block any potentially-conflicting 
variant characters across the representation label rules. 

If a suitable existing repertoire were not available for a label someone desired, then 
those wishing to adjust an existing repertoire, or to create a new one, would need 
to request a new panel to create a suitable repertoire.  Label generation 
maintenance panels, as outlined in the previous scenario, would likely be needed.  
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As suggested above, it would be important to create a process that tended to 
discourage the creation of new repertoires or many modifications to existing 
repertoires.  The reason for this is the same as the reasoning offered for variant 
labels in the first place:  the “principle of least surprise.”  If the goal is to ensure that 
users are not surprised, then rules that are different depending on when a label was 
added to the root zone would violate that principle of least surprise.  Once a label 
generation policy permits a code point or establishes a variant rule, it should be 
difficult (although not impossible) to change that. 

A notable advantage of this scenario is that it avoids the somewhat artificial link 
between the Unicode script properties and any given language.  In addition, because 
it does not require any treatment of code points for which there is no demand until 
that demand appears, it avoids having to address code points for which the 
expertise is not available.  A significant disadvantage to this approach is that it relies 
less on existing attributes (such as Unicode script properties) and relies more on 
expert groups to make findings about the code points.  It also has the potential for 
“deadlock” and competing repertoires where different groups of users cannot come 
to agreement about how to deal with a subset of code points. 

4. Evaluate community proposals for label generation rules 

This scenario would keep the comprehensiveness and qualification parameters the 
same as the previous one, but lower the “expertise” parameter so that the expert 
panel would merely review submitted proposals from the community instead of 
developing the representation label rules itself.  Because this scenario relies on the 
interest of the community to develop the representation repertoires and associated 
variant rules, this approach would minimize the amount of work expended on code 
points that nobody wants.  On the other hand, it seems possible that experts would 
recognize interactions and issues that might not be included in volunteer 
submissions.  This could lead to considerably greater instability in the label 
generation rules, as problems were identified (presumably sometimes after the fact 
of activation in the root) and then addressed.  Much stronger conflict-resolution 
mechanisms would be needed for this scenario, but it appears that the experts 
would act as a filter that would perform most such conflict resolution. 

5.  Build up zone repertoires ad hoc 

This scenario sets the comprehensiveness, qualification, and expert parameters all 
to the minimum.  In this case, interested parties of any sort could submit 
representation label rules they desire.  All of them would be accepted in an additive 
way to govern the root. Instead of ICANN selecting an expert group, representation 
repertoires and associated variant rules could be created by interested parties, 
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organized according to whatever principle they liked.  The combination of these 
representation label rules into a single label generation policy would still need a 
meta-rule in order to deal with conflicts; in general, such a rule should always pick 
the most reversible action (i.e., blocking), to avoid controversial or possibly harmful 
entries in the root zone.  (So in many cases, conflicting rules would cause potential 
variants to be covered by the rules all to be blocked.) 

The principal advantage of this approach is that it would take ICANN completely out 
of the role of deciding whose expertise counts with respect to a language or script.  
A significant disadvantage of this approach would be that it is subject to denial of 
service: someone who is opposed to variants in principle (or in some specific case) 
could always create a conflicting rule for any representation label rule, and the 
conflict-resolution mechanism (in order to do the safest thing) would therefore tend 
to prevent any variant labels from being activated.  Moreover, because this 
approach tends to encourage more innovative repertoires and associated rules (as 
there is little cost to adding one), it is more likely to lead to instability in the label 
generation policy. 

4.3 Synopsis of Issues 
Establishment of label generation rules is a crucial step toward developing a variant 
management mechanism for the root zone, and the methodology used in this 
regard will significantly impact consideration of the other issues in this report.  
Determining the best methodology to achieve the desired goals of consistency and 
reliability will require a balancing of factors including definition of the scope and 
identification of the necessary parties to be involved in establishing the label 
generation rules.    
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5 Discussion of Issues:  Treatment of Variant Labels  
Once variant labels are identified, a range of possible states and corresponding actions may be 
taken on those labels.  Thus, a variant management mechanism could encompass both active 
use of labels in the DNS, and prevention of labels from use in the DNS.  The possible states that 
apply to a name are as follows: 
 
Blocked:  A status of some label with respect to a zone, according to which the label is 
unavailable for allocation to anyone.  The term “to block” denotes the registry (the zone 
operator) taking this action. 
 
Withheld:  A status of some label with respect to a zone, whereby the label is set aside for 
possible allocation to some entity. In this strict sense, a withheld name is not actually allocated.  
The term “to withhold” denotes the registry (the zone operator) performing the setting aside. 
 
Allocated:  A status of some label with respect to a zone, whereby the label is associated 
administratively to some entity that has requested the label. This term, and its cognates 
“allocation” and “to allocate”, represents the first step on the way to delegation in the DNS.  
When the registry (zone operator) allocates the label, it is effectively making a label a candidate 
for activation.  Allocation does not, however, affect the DNS at all. 
 
Activated/Active:  A status of some label with respect to a zone, indicating that there are DNS 
resource records at that node name; or else that there are subordinate names to that name, 
even though there are no resource records at that node name. In the case where there are 
resource records at the node name, any resource record will do.  In the case where there are 
subordinate names but no resource records (except those to support DNSSEC), the label names 
an empty non-terminal.  A registry (zone operator) setting the active status activates the name, 
or performs activation.     
 
Delegated:  A status of some label with respect to a zone, indicating that in that zone there are 
NS resource records at the label.  The NS resource records create a zone cut, and correspond to 
an SOA record in the subordinate domain. The act of entering the NS records in the zone is 
delegation, and to do that is to delegate.  This definition is largely based on RFC 103423; the 
reader should consult RFC 1034 for detailed discussion of how the DNS is broken into zones. 
 
Mirrored:  A status of some active label with respect to a zone, indicating the isomorphism of 
the namespace beginning with that label, and at least one other namespace beginning with 
another active label in the zone.  If two domain names are mirrored, then for a namespace 

                                                           
23 http://www.rfc-editor.org/rfc/rfc1034.txt 
 

http://www.rfc-editor.org/rfc/rfc1034.txt
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starting with one, the namespace starting with the other is isomorphic to the first, subject to the 
usual DNS loose consistency strictures. The act of setting two or more labels to be mirrored and 
maintaining the namespace correctly is mirroring.  Currently, there are two different techniques 
for this. The first is aliasing: CNAME, DNAME, and other such techniques that redirect a name or 
a tree, effectively substituting one label for another during DNS lookup. The second is by using 
provisioning constraints, such that an underlying provisioning system always effects a change in 
all of the names whenever that change is effected in one of the names.  The set of domain 
names (not labels) that are supposed to be the beginning of isomorphism are mirrors.  Mirrors 
whose namespaces have not been maintained to preserve isomorphism are broken mirrors. 
 
The state values blocked, withheld, and allocated are mutually exclusive. The active (which 
includes but is not limited to delegated and mirrored) state usually implies that allocation has 
occurred. 
 
These states may result in a different user experience, as well as having an impact on the 
operations of ICANN, the TLD registry operator, and other stakeholders that are part of the 
Internet ecosystem.  This section discusses the issues that arise in this area as a result of IDN 
variant TLD labels. 

5.1 Possible States for Variant Labels 
 

The states associated with the actions described above are of the predictable forms: 
blocked, withheld, allocated, activated, delegated, and mirrored. 
 
Since blocked means that nobody may have the allocation, it follows that nobody could 
request such a state (for that would imply some sort of proto-allocation over the 
domain); therefore, blocked is a pure matter of registry policy (in the context of this 
report, an action taken by the registry for the root zone, i.e., ICANN).  Blocking could be 
the consequence of the combination of a registry policy and some state of the registry.  
For example, the rule for a code-point could be such that, if a label containing that code 
point is allocated, then a label containing some other code point must be blocked.  
 
Because blocking is a matter of registry policy, the change of a label from blocked to any 
other state is either a consequence of a change in registry policy, or else a change in 
state in the registry such that the blocking condition (e.g., the allocation of a label with a 
block-generating code point) is removed. 
 
A withheld status results from the combination of policy and the requests of applicants.  
For example, suppose a registry policy permits (but does not require) a TLD label and its 
variant TLD label to be delegated.  In the event the applicant chooses not to delegate 
the variant TLD label, registry policy may require that the variant TLD label be withheld 
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from all others but the applicant throughout the registration lifetime of the 
fundamental label. In accordance with an applicant request, the variant TLD label could 
move from being withheld to being allocated (and then anything that can be done with 
an allocated label would apply). 

 
In principle, a change in registry policy (but not a change in registry state) could cause a 
label to move from withheld to blocked.  If a change in registry state were to cause this, 
it would be an indication that the registry policy was inadequate in the first place, 
because it had not addressed potential conflicts well enough. However, since both 
states imply the label is not active in the DNS, the implications for users seem negligible, 
if any. 
 
An allocated status would result from any case where an application containing a variant 
TLD label is approved, and it is not blocked or withheld.  An allocated status could also 
result when a variant TLD label associated with a fundamental label is either also 
requested to be activated, or required by registry policy to be activated (see below).  By 
request, the status of an allocated label could be changed to withheld.  Allocated labels 
may normally be activated, subject to usual registry policies, at the initiative of the 
registrant of that label (i.e., in the context of the root zone, usually the TLD operator). A 
change of state from allocated to either withheld or blocked should have negligible 
implications for users other than the registry to which the label was allocated. 
 
An activated status results from placing some sort of DNS record into the parent zone 
such that it is possible to perform a DNS lookup on the name and receive an answer.  It 
is possible for the registry to require the simultaneous activation of a group of names, 
denying all of them if any of them cannot be activated.  Delegation and mirroring are 
just species of activation.  A domain can be de-activated by removing the relevant 
records from the DNS (for technical reasons, when there is a delegation the name often 
has to be removed from both the parent side and child side name servers in order that it 
stop resolving, but the details of how to ensure a name has stopped operating 
completely in the DNS are beyond the scope of the present report). 
 
De-activating a TLD in the root could have grave consequences on users if such TLD has 
itself active names under it. Removing a TLD from the root zone is by no means a simple 
operation, and the few cases that have happened in the past took in the order of years 
to complete. 

 5.2  User Experience with Variant Labels 
The case study reports discussed issues to be considered from the user’s perspective, 
such as input methods like keyboards, and software issues. While many of these issues 
are directly relevant to user experience of IDNs, they are not a result of variant labels as 
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such (although input methods may drive some calls for variants). The use or expectation 
of IDN variant TLDs, however, affects user experience and this section explores those 
issues.  On top of these issues, it is important to keep in mind the limitations in the 
overall Internet operating environment described in section 1. 

5.2.1 IDNA2003 to IDNA2008 migration issues 
Despite the definition of domain name labels as octets (which means, in principle, that 
there are no character set-specific rules about the handling of those labels), RFC 1034 
defines a Preferred Name Syntax24.  This is the source of two features of the DNS that 
cause trouble for internationalization.  The first is the “LDH” convention: conforming 
labels are made up of letters, digits, and the hyphen.  The second is the issue of case. 
 
The DNS is often said to be “case insensitive”, but that does not quite capture how it 
behaves.  For LDH names, it is case-insensitive, but case-preserving.25  This means that, 
while the domain name labels “example” and “ExAmple” match one another for the 
purposes of lookup, they may be displayed differently to users.  This facility is at least 
sometimes used to make names easier to remember (or pronounce correctly).  
 
This feature of LDH naming may have established a user expectation that extends to 
other scripts that use case, such as Cyrillic, Greek, and Latin.  Unfortunately, IDNA does 
not work similarly with respect to case.  IDNA2003 folds the case of upper-case code 
points to lower-case26 on the Unicode form of the label it receives.  This step often 
causes diacritics to be lost, which means that the case-folded name may not match the 
name stored in the DNS. By contrast, under IDNA2008 all upper case code points are 
disallowed. Application software may or may not do something with upper case code 
points (though there are recommendations that applications perform a case fold 
operation prior to putting the string into NFC form to be used as a U-label; see RFC 
589527); but even after the application has performed some mapping, the results may 
be surprising to the user.  To give an example: to many French speakers, the upper case 
of LATIN SMALL LETTER E WITH ACUTE, U+00E9 (é) is LATIN CAPITAL LETTER E, U+0045 

                                                           
24 RFC 1034, section 3.5 
 
25 Case insensitivity is specified in RFC 1034, sections 3.1 and 3.5.  Section 3.1, however, says that case is 
to be preserved on receipt.   
 
26 This is an oversimplification.  More accurately, the Nameprep stage of IDNA2003 processing uses a 
Stringprep appendix that specifies case-fold mappings in many instances.  See RFC 3454, Appendix B.2 for 
Stringprep, RFC 3491 section 3 for the specification of which mapping to use, and RFC 3490 for the 
specification of when to use Nameprep.  
 
27 See http://www.rfc-editor.org/rfc/rfc5895.txt 
 

http://www.rfc-editor.org/rfc/rfc5895.txt
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(E) rather than LATIN CAPITAL LETTER E WITH ACUTE, U+00C9 (É).  But the case-folded 
form of E is e, so someone who tries to use the label “ECOLE” will not manage to reach 
the label “école”. 
 
This issue is not directly related to variants, but it is rather a general issue of IDNA 
support.  It might, however, be one important type of variant-inspiring behavior, 
because most of the deployed code today supports IDNA2003 and not IDNA2008.  As a 
result, one class of desirable variants might be those that cause the loss of information 
due to case folding not to be apparent to users.  The Latin case study report rejected 
variants of this (and every other) sort because they are not generalizable in the Latin 
script.28  The issue is nevertheless much (if not all) of the basis for the Greek case study 
report’s recommendations with respect to tonos and final form sigma.29 

5.2.2 Types of users 
 
The users of the DNS are varied in respect of what they expect, what they want, and 
what they need.  The deployment of any variant strategy will affect the different types 
of users differently. There are two basic categories of affected user. One category 
includes those who are directly involved in some way in the registration or operation of 
the name in question. The other category includes only those who are in no way 
involved in the operation, but interact with the name somehow.  Some people can fall 
into both categories, but only these two groups are relevant. They can be described as 
follows: 
 

• System administrator of the affected systems: One who has to configure the 
variant domain names to work on the target systems; 

• Other network operators not involved in operating the target name: People who 
need to deal with network traffic from multiple names that are somehow 
supposed to be the same; 

• Registrants: The primary contact for registration of a name; 
• Registrars: The service providers who perform actions on the names during 

registration (registration privacy vendors and resellers would be special cases of 
these); 

• Registry operators: The service providers who provide the authoritative 
repository where a name (and its variants) might be registered;  

• Software developers: The developers of software such as hosting management 
systems that need to be able to treat multiple names as somehow being 

                                                           
28 Latin case study, p.1 
 
29 Cf. Greek case study, sections 11 and 12, pp. 9 ff 
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variants of one another, as well as end-user software like web browsers that will 
need to be able to cope with cases where variants are exposed to them; 

• Law enforcement and other security investigators: Those who may need to 
interact with a domain and any of its variants due to legal or network security 
reasons;  

• End users: the average Internet user exposed to the domain name and any 
variants. This is the user “reading the label on the side of a bus,” but it extends 
to anyone who is exposed to variant labels on the Internet.  

 
The effects on registry operators and registrars are covered in section 5.4.  The rest of 
the affected parties are considered below. 
 
It is important to recognize that some parties who might be affected are not affected in 
every case.  For instance, while a registrant is affected no matter what the status of 
variants labels, other network operators experience traffic (and therefore possible cost) 
only when a name and its variants are actually in the DNS and originating traffic. 

5.2.3 User capabilities 
Any user of any of the types listed will have some capabilities with respect to any given 
internationalized label.  There are three broad categories of capability. 
 
The first is competence in the script or language relevant to the label.  A user with this 
capability can understand the label (or, anyway, find it intuitive enough to use – there is 
no reason to assume the label will be a word), has the ability to type and otherwise use 
the label, and so on.  A native user of simplified Chinese encountering a simplified 
Chinese label while using his or her own computer might be an example of this category. 
 
The second category is of limited competence with the script or language relevant to the 
label.  A user with this capability might be able (for instance) to read the script well 
enough to recognize roughly what the label is, but not read the intended language of 
the label well enough to use it easily (consider an English speaker confronted with two 
labels, one intended for a Swedish audience and one for a Norwegian audience).  On the 
other hand, the user may simply be faced with technical limitations that cause difficulty 
in the use of the label (imagine someone at a public-terminal keyboard in Iran 
attempting to write a label that includes ARABIC LETTER YEH, U+064A, ي). 
 
The third category is of no familiarity with the relevant script or language.  Users in this 
category can at best cut and paste unfamiliar symbols, and may not even be in a 
position to do that, owing to display limitations or other issues.  They cannot 
understand the label's intended meaning, and the A-label form of the label is exactly as 
useful (or useless) to such a user as the U-label form.  
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5.2.4 What users expect and what they get 
 
For each category of users, it is useful to think of the user experience in terms of what 
the user might expect.  Imagine a base string X and another string Y.  X is a U-label that 
makes a top-level domain.  There are four possible experiences a user might have: 
 
E1: The user expects Y to work as a substitute for X, and it does. 
E2: The user expects Y to work as a substitute for X, but it does only partially or 
unreliably. 
E3: The user expects Y to work as a substitute for X, and it does not.                          
E4: The user does not expect Y to work as a substitute for X, and it does. 
E5: The user does not expect Y to work as a substitute for X, but it sometimes does.  
E6: The user does not expect Y to work as a substitute for X, and it does not. 
 
For the present purposes, E6 is not that interesting: without any variant effort, this 
expectation and experience would be met by the traditional operation of the DNS.  
Therefore, we will concentrate on cases E1-E5.  For the following discussion, imagine 
two candidate fully qualified domain names: example.X and example.Y. 
 
Before proceeding, it is necessary to expand on this very simplistic notion of “work.”  
We have here distinguished between “not working at all” and “working partly.”30  Given 
the loose consistency requirements in the DNS, most services on the Internet do not 
work or fail to work all at once: with the exception of cases where a service is simply not 
configured or activated (not working at all), most cases of “not working” are 
intermittent.  Failures related to DNS resolution or inconsistent resolution results take 
time to propagate, and an observation made by one person from one position on the 
network may not be repeatable elsewhere.  Experience with deployed systems suggests 
that configuration is likely to have frequent minor inconsistencies, with some system or 
some part of some system incorrectly configured instead of being completely broken.  
These considerations, and the general principle of robustness for Internet servers, mean 
that inconsistent behavior or intermittent failures are more likely than complete failure. 
In the following discussion, “does not work” merely means “the support is not available 
or it is somehow disabled”; every other type of failure is a partial failure.  But it should 
be remembered that in many ways this sort of partial failure (or inconsistency) is worse, 
because users cannot discern a reliable pattern. 
 

                                                           
30 Even understandings of “working” could differ based on how an operation occurs.  A forwarding 
mechanism from one domain to another is a different type of “working” from two domains functioning as 
equals.  What a user sees displayed in a browser bar, for example, might not be what is expected.   
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Moreover, the example that we are using is itself artificially constrained: in the case 
where there are variant TLDs, there is every reason to believe that there would be 
variants at the second level as well; so the two names example.X and example.Y would 
in practice likely be a list of several names instead.  The number of fully-qualified names 
would be the number of TLD variants times the number of second-level label variants.  
In general, the number of fully-qualified names in the entire set of names to be 
managed is determined by multiplying the number of variants in each label of any one 
of the fully qualified names in the set by the number of labels in that member of the set.  
So, If there were three levels (e.g. ‘www.example.X’ and variants of all those levels of 
label) then the number of variant names is the number of variant TLD labels times the 
number of second level variant labels times the number of third level variant labels. 
 
System administrators 
 
The system administrator has a practical problem to address whenever performing any 
administrative functions in an environment where mirrored variants exist. As of this 
writing, there are very few tools that already support administration of IDNA labels 
using the U-label form.  This means that administrators need mostly to work with names 
in A-label form: “xn--sample-punycode-output-here.”  Moreover, tools mostly do not 
have direct support for linking various names together, so as far as the tools are 
concerned these variants are all just separate names from one another.  For instance, 
apart from adding parallel configuration for different names to a mail server, many mail 
servers have no way of telling that the same local-part at example.X and example.Y are 
really the same mailboxes. 
 
In the case of E1 (user expected a variant and such is implemented), the system 
administrator for the affected domain has to configure all the services at example.X also 
to respond to example.Y (so that, for example, the web server responds to web page 
requests on http://example.X and also http://example.Y; mail to user@example.X and 
mail to user@example.Y both get directed to the same mailbox; and any other service 
that is aware of the name with which it was contacted works in parallel as well).  If the 
system administrator does this, then each such service will work the same way for 
example.X and example.Y.  There is, of course, a maintenance cost, in that services for 
example.Y need to be reconfigured whenever services for example.X are.  Similarly, any 
site renumbering and so on will require twice the effort (and additional effort for each 
additional working variant).  If the system administrator fails to maintain the services in 
a coordinated fashion, then there will be inconsistent results and possibly service 
outages. 
 
It is difficult to know how case E2 (user expected a variant and it works unreliably) could 
happen here, unless the TLD operator of X and Y were having problems with Y.  For the 
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system administrator, such a case would mean service outages and surprises that would 
be difficult to diagnose. 
 
In the case of E3 (user expected a variant which is not implemented), the system 
administrator configures all the services for example.X also to respond to example.Y, 
just as in the case of E1.  The effects of this, however, are either negligible or mildly 
dangerous, depending on how the parent domain is administered.  If Y is not active 
because it is allocated-only, blocked or withheld as a possible variant, then there is little 
harm: the system administrator’s systems respond to a name that will never be looked 
up on the Internet, so no damage occurs.  Matters are different, however, if a system 
administrator configures the systems to respond to example.Y, but Y is in fact a 
completely separate domain delegated to a different registry operator than X.  In this 
case, the system administrator has configured the systems to operate using a name that 
the system administrator does not actually control. In principle queries for example.Y 
should not arrive to the servers for example.X (since the parent name does not consider 
them variants), but they could if the servers are also recursive.  In effect, the system 
administrator will have accidentally hijacked example.Y, from the point of view of those 
querying the servers configured by said system administrator. 
 
In the case of E4 (user does not expect a variant but such exists), the system 
administrator does not configure anything to respond to example.Y, but it turns out that 
Y is in fact an activated variant of X.  In this case, the service will receive connection 
attempts on example.Y, even though the services believe example.Y is not one of their 
names (for services that are aware of the name with which they were contacted).  The 
registrant of that name might in this case lose web hits, emails, messages, etc.  This case 
might be something that would cause others to have E2- or E3-type experiences. 
 
The case of E5 (user does not expect a variant, but it works sometimes) is, for the 
system administrator, just like E4 only with the addition of intermittency.  The 
intermittency could be only in time: because the failure would have to result from DNS 
failures in Y (or its children), it is unlikely that the failures would be restricted only to 
some services. 
 
Other network operators 
 
Similar to the system administrator, the network operator user will mainly be affected 
by active variants and particularly mirrored variants.  Network operators who are not 
directly related to the operation of example.X may nevertheless encounter example.X 
(and example.Y), because the network operators are intermediaries between the 
operator of example.X and other end users.  The effects on these operators are mostly 
subtle and not that serious; on the other hand, if they happen they will contribute to a 
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general failure of reliability of variant names.  Moreover, for very large network 
operators, even relatively small numbers of failures can result in significant increases in 
logging and troubleshooting costs.  Additionally, given the state of the DNS today, there 
will be no ways inside the DNS for a network operator to tell that example.X and 
example.Y are related to one another; and because the network operator has no 
existing relationship to these names, he or she would have no reason to suppose they 
are related to one another.  The operator would have to resort to tools like WHOIS, 
which are poorly adapted to use in automated systems. 
 
In the case of E1 (user expected a variant and such is implemented), the network 
operator sees no effect, but logs will be less compressible than they otherwise would 
be.  Even at large sites, the additional compression overhead is unlikely to be a really 
significant cost, but because this is an effect it is included here for completeness. 
 
In the case of E2 (user expected a variant which works sometimes), the network 
operator occasionally experiences the same problems as in E3.  This “sometimes” might 
be over time, or it might be consistent but related to a single service. For instance, if the 
system administrator discussed above failed to keep the configuration for the mail 
server up to date, mail to example.X might work while mail to example.Y failed; if the 
mail was coming from the network operator’s site, then the network operator may 
experience increased support and troubleshooting costs.  
 
In the case of E3 (user expected a variant which is not implemented), the network 
operator may experience increased customer support costs, as customers of said 
network operator find that example.Y does not work.  In addition, for mediated services 
(like email, where the network operator likely runs the outbound mail server) there will 
be additional load due to failed transmissions. 
 
In the case of E4 (user does not expect a variant but such exists), the network operator 
may experience traffic from an unexpected source.  This could cause the network 
operator to react to the traffic as abuse, or just to reject it, particularly if the network 
operator is expecting the reverse DNS tree and the forward DNS tree to match exactly.  
If the system administrator for example.X and example.Y is doing a good job, however, 
this case is not very likely. 
 
A similar effect, rather more likely, would happen in case of E5 (user does not expect a 
variant, and one works sometimes).  Suppose that the system administrator of 
example.X and example.Y has done an indifferent job, and so example.Y is incorrectly 
configured in the DNS (such that it has no mail exchange).  Users of example.X, however, 
sometimes use the example.Y form when sending their email.  Inbound email to the 
network operator’s mail server might be checked for proper configuration, in order to 
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ensure that mail from user@example.Y is legitimate.  Because example.Y could not 
possibly get mail back, the network operator might reject the mail (probably discarding 
it), and might begin to treat the source of the mail as a source of spam.  This treatment 
might even affect mail from example.X, because many spam handling systems work by 
identifying the IP address (of the source mail server) rather than domain name.  
 
Registrants 
 
A registrant is in some sense in the best position to refine his or her expectations of 
what will happen with a name, but is also constrained by registry policies and the 
available registry and (where they are involved) registrar systems in what the registrant 
receives.  In particular, in our example we are supposing a registrant of example.X, so 
the variant relationship is at the parent.  If the parent operates by doing automatic 
mirroring (by, for instance, using a DNAME record to point Y to X), then the user might 
not be aware that he or she is in fact registrant of two different DNS names.  (Compare 
also to the system administrator discussion, above.) 
 
Before consideration of the cases, it is important to note that registrants need to have 
an understanding of the various possible states of variant labels whenever they have 
options for managing the variants.  For instance, in a case where a registry automatically 
withholds variants but does not allocate them without some action on the part of a 
registrant, the registrant needs to know to look for this action.  Similarly, if there are 
restrictions on how a variant name may be operated (like a restriction to mirroring, for 
instance), the registrant needs to understand these rules.  This may be more 
information about the domain name life cycle than a registrant is usually prepared for. 
 
Case E1 (user expected a variant and such is implemented) is of course the ideal for the 
registrant, as long as the registrant actually knows that the support is there.  
 
Case E2 (user expected a variant but it only sometimes works) might happen if the chain 
of systems between the registrant and the registry had missing or buggy features: the 
management of a variant label, for instance, might not work correctly.  This is likely to 
cause apparent service failures. 
 
Case E3 (user expected a variant which is not implemented) is the one that is most 
difficult for the registrant, because the registrant expects certain things to work that do 
not.  This leads to unexpected failures (e.g., a web site that does not serve all the visitors 
that were expected, or mail that cannot be received from some people).  This failure 
case is also likely to be a surprising one – that is, the registrant likely does not know to 
look for a failure in the first place, and therefore is not aware that the problem exists.  
(If the registrant knows about the problem, of course, he or she could simply register 

mailto:user@example.Y
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the additional name, assuming the Y TLD also existed.  But the primary motivator for 
variants is for the case where humans do not detect a difference even though machines 
do.) 
 
Case E4 (user does not expect a variant but such exists) is possibly a pleasant surprise 
for the registrant of example.X. There is also the case of a potential registrant (not to be 
confused with that of example.X) that tries to register example.Y, which may result in 
some confusion for a non-Active variant. However, this case is no worse than when a 
user expects to register a name and finds that it is already registered in a scenario with 
no variant TLDs. 
 
Case E5 (user does not expect a variant but it works sometimes) is not much different 
from case E4. 
 
Software developers 
 
Similar to the network operator, software developer users will mainly be affected by 
active variants, and particularly mirrored variants. The software development 
communities that are affected by variants are quite different from one another.  On the 
one hand are those who are developing systems and support tools for system 
administrators and others (we can call these “systems programmers”).  This group will 
need to be able to expose as much information as possible about variants, because the 
administrators of the systems need to be able to manage in small increments.  On the 
other hand are those who develop software aimed at end users (we can call these 
“application programmers”).  This group needs to make the variant experience as 
smooth as possible for users, hiding the details of differences in the DNS so that the 
user’s experience is as though there were no variants at all.  The good news for all of 
these cases is that, if a developer makes an effort to support the scenario well one time, 
that effort is completely reusable for any other such cases.  In both cases, the 
programmers have to build for a completely generic situation and therefore cannot take 
into consideration hints about the likely situation of the user (except in very unusual 
circumstances such as custom software development). 
 
For case E1 (user expected a variant and such is implemented), the systems programmer 
needs to be able to link together example.X and example.Y so that the names function 
as one; at the same time, the systems programmer needs to be able to detect the 
differences so that configuration can happen correctly for variant-unaware utilities.  The 
support tools will not be able to do everything they need to do via the DNS (at least 
initially), because there is no way in the DNS to signal reliably the link between two 
names.  (When using aliasing like DNAME, the link is one way; so if Y has a DNAME 
pointing to X, you have no way of knowing that there is such a DNAME record when you 
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look up example.X.)  Because X.509 certificates (which underlie security protocols like 
TLS, which is the current standard for, e.g., commercial transactions on the Internet) are 
tightly linked to the domain name with which they are used, application programmers 
will probably need to be able to recover from TLS failures relating to variant names.  
Such behavior is today unspecified, and so will need to be specified if it is ever to work.  
(Such specification, and the subsequent deployment, should be expected to take several 
years even if they happen.)    
 
In case E2 (user expected a variant that only works sometimes), the systems 
programmer’s situation is just like E1.  Poor tools are likely to cause E2-type experiences 
for systems administrators, however.  E2 cases present a problem for application 
programmers, who will have a difficult job knowing how to support their users. 
 
For case E3 (user expected a variant which is not implemented), the situation is 
essentially similar to Case E2. 
 
In case E4 (user does not expect a variant but such exists), if the programmer does not 
know about variants, he/she will not include support for variants in the tools used by 
others.  Therefore, this case would have a negative impact on other users, e.g., system 
administrators, network operators, or end users. 
 
Case E5 (user does not expect a variant, but one works sometimes) is similar to case E4. 
 
Law enforcement and security 
 
This type of user is predominantly affected by mirrored variants, but also by active 
variants in general. The user could also be interested in other states, e.g., allocated 
variants. Those performing law enforcement or security investigations may be a special 
class of user in that their needs lie somewhere between those of the end user and those 
of the (other) network administrator.  They have in principle no special relationship with 
the operator of the domain name in question, but encounter the names in question as 
part of some other activity (like an enforcement action or a security breach 
investigation), and not as part of an effort to obtain some resource or direct some traffic 
towards the domain. 
 
Case E1 (user expected a variant and such is implemented) is desirable: the user gets 
exactly what he or she expects, and can discover all the links among (in the example) 
example.Y and example.X. 
 
Case E2 (user expected a variant but it works only partially) might be troublesome.  If 
the problem is intermittent functioning, then the user might interpret that intermittency 
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as part of the problem and be led astray in the investigation.  If the problem is only 
partial or inconsistent support, then the user might have a more difficult time 
undertaking the sort of investigation he or she desires.  For instance, if WHOIS support is 
incomplete and fails to reveal all the links one might need, then the user may not realize 
that the different names are somehow to be treated as related to one another. 
 
Case E3 (user expected a variant but it does not work) is unlikely to cause any troubles, 
because this sort of user is going to be interested in things that are (or were) actually 
working. 
 
Case E4 (user did not expect a variant and it does work) is quite bad for this type of user, 
because the user will not realize that the name he or she is investigating is not the only 
name under investigation.  It might be that the array of support tools available to the 
user will reveal the links among the different names, in which case there is merely 
confusion rather than failure to complete an investigation.  If, however, the 
investigation relies primarily on the DNS and aliasing techniques such as DNAME are in 
use, it may be practically impossible to discover the variant relationship.  
 
Case E5 (user did not expect a variant, but it works sometimes) is similar to case E4, with 
the added complication of intermittent or inconsistent behavior. 
 
End users 
 
Similar to the law enforcement and security users, end users will mainly be affected by 
active variants, and particularly mirrored variants. However, inactive variants could also 
cause difficulties for this user. The end user is in a position not dissimilar to the network 
operator, in that the end user does not in principle have any special relationship with 
the operation of the domain name in question and so does not have any information 
that might lead to the belief that a variant ought to work.  End users are the primary 
target of support for variants: the naïve user who types a string expecting it to function 
as a domain name, or who clicks on a link seeing it as connecting to a familiar web site, 
is at bottom what motivates any type of variant.  Therefore, case E1 (user expected a 
variant and such is implemented) is the ideal one: the end user got exactly what he or 
she expected, without having to worry about how a name was actually made out of 
Unicode code points. 
 
Case E2 (user expected a variant, and it works inconsistently) is a frustrating experience 
for users.  With a name that works under some circumstances and not others – either 
over time, or in some services and not others – the user cannot easily learn a new 
pattern of behavior with respect to the DNS.  This inconsistency is also one that will be 
problematic across domains.  In the absence of consistent and predictable variant 
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behavior that corresponds to users’ practical model of how naming works on the 
Internet, any variant strategy will quickly fall away as users start to treat domain names 
as unreliable.  Given the inconsistency of conventions for relating various names to one 
another in the DNS today (and all of the system administration problems such related 
names would bring), users are today experiencing E2 cases. 
 
Case E3 (user expected a variant which is not implemented) is the worst case for end 
users, and it has two failure modes.  The first is denial of service: the user attempts to 
visit http://example.Y, reading it as being the same URI as the http://example.X that he 
or she saw in an advertisement, but the connection does not work because A is either 
blocked, withheld, or allocated-only; or has no variant at all, and example.Y is not 
registered.  In this case, the user is frustrated but no serious harm has arisen.  The 
second mode is a false connection: the user attempts to visit http://example.Y, reading 
it as being the same URI as the http://example.X that he or she saw in an advertisement, 
but arrives at a site controlled by a registrant different to that of example.X.  Even if this 
effect is not the result of malicious work on the part of A’s operator or example.Y 
registrant, it is bad.  It is extremely unlikely that phishers and other malefactors will go 
to the trouble and expense of registering a TLD when there are much cheaper 
alternatives already available and which are just as effective.  But even an accidental 
connection of this sort to a perfectly legitimate site operating at example.Y presents 
issues of possible credential leakage, accidental disclosure of information, and user 
confusion and frustration. 
 
Cases E4 and E5 (user does not expect a variant but such exists or works sometimes) is 
an uninteresting case since the end user is not affected in any way either for good or 
bad. 

5.2.5 Consistency 
As noted above, from an end user’s point of view, there are two kinds of inconsistency 
that could be observed in the face of variant labels, i.e., vertically and horizontally.  The 
first is inconsistency with respect to a given name or service (i.e., vertically): a name and 
its variant might work for one service but not for another, or the variant name might 
work some days and not others.  But there is another type of inconsistency, at least as 
bad, and which is already deployed today. 
 
Consistency of behavior of a system (i.e., horizontally) – its predictability – is a critical 
feature for that system to be relied upon. In the absence of consistent and predictable 
variant behavior that corresponds to users’ practical model of how naming works on the 
Internet, any variant strategy will quickly fall away as users start to treat domain names 
as unpredictable.  Given the inconsistency of conventions for relating various names to 
one another in the DNS today (and all of the system administration problems such 



63 

 

related names would bring), users are today experiencing E2 cases.  A model of variants 
that expands their use at the expense of the predictability of Internet naming systems 
would be harmful. 
 
One example of such system-wide inconsistency issues is related to the manner in which 
variant names are identified and treated across different TLDs. The issue is not directly 
in scope for this project, since it was chartered to study IDN variant issues at the root 
level. However, there may be value in studying this issue and considering potential 
approaches to mitigate its consequences to the user experience. 

5.2.6 Chains of actors and distributed systems 
The Internet is mostly made up of distributed systems, and with a few exceptions it is 
rare that systems dependent on a large number of people all doing the same thing at 
the same time get deployed.  The practical difficulty of getting everyone to change 
naming systems at the same time on the Internet, for instance, is part of the reason that 
IDNA avoids actually changing the DNS protocols themselves, even though that decision 
means that several desirable features cannot reasonably be accommodated.  But as we 
see from the example scenarios above, a suitably invisible end user experience in the 
presence of variant names is difficult to predict.  It seems to depend on several 
independent actors all acting well at the same time, with failures at one point in the 
system cascading through until visible to the user.  Because of the distributed nature of 
the Internet, and the protocol layering that is one of the Internet’s chief strengths, the 
technical problems raised by variants are not amenable to a simple technical solution. 

5.3 ICANN Operations and Variant TLDs 
In applying a variant management mechanism for the root, ICANN would incur a 
number of operational issues, discussed in this section. 

5.3.1 Evaluation 
The evaluation processes for gTLD applications are documented in the gTLD Applicant 
Guidebook.31  IDN ccTLDs may currently be requested via the IDN ccTLD Fast Track 
process, in accordance with the procedures in the Final Implementation Plan.32  The Fast 
Track was intended to enable the introduction of a limited number of non-contentious 
IDN ccTLDs, associated with the ISO 3166-1 two-letter codes, to meet near-term 

                                                           
31 http://www.icann.org/en/topics/new-gtlds/rfp-clean-19sep11-en.pdf 
 
32 http://www.icann.org/en/topics/idn/fast-track/idn-cctld-implementation-plan-16nov09-en.pdf 
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demand while the overall policy is being developed.  The ccNSO is undertaking a policy 
development process33 concerning the introduction of IDN ccTLDs.   

These current processes do not allow for the delegation of IDN variant TLDs until such 
time as a variant management mechanism for the top level is in place.  (For a discussion 
of how potential variant cases are expected to be handled in the initial round of gTLD 
applications, see Appendix 5.)  This section describes the various evaluation activities 
that could be required in a scenario where variant TLDs were able to be requested, i.e., 
assuming some type of variant management mechanism has been put in place.  The 
activities described here can be considered according to two types of evaluation:  1) 
evaluation activities relating to the variant request itself, and 2) resulting variant 
considerations in other evaluation activities. 

5.3.1.1  Evaluation of Variant TLD Requests 
These activities could be covered by the Label Generation Rules, and the issues involved 
depend significantly on the approach taken to establishing these rules, as discussed in 
section 4.1 above.  If, at the time it is evaluating specific requests, ICANN can refer to an 
existing authoritative source that will produce a definitive result on whether two strings 
can be considered variant TLD labels, the impact would largely consist of new sub-
processes to take the variant labels into account within existing evaluation steps.  In the 
ad hoc approach discussed in section 4.2 above, ICANN would not perform any 
evaluation except to determine whether any label generation rules were conflicting.     

If label generation rules are not pre-existing at the time ICANN is considering requests, 
then this work could occur in parallel with specific requests, resulting in possibly 
extended timelines and, depending on the approach adopted, additional review steps 
for ICANN.     

The relevant costs incurred by ICANN in performing evaluation processes would also 
vary depending on the approach taken to establishing label generation rules.  The level 
of case-by case-review required, the areas of expertise required, and the number of 
determinations required on requests would have a significant impact on both the 
resources needed to execute such reviews and the risks to be anticipated in such a 
process.  To the extent that additional costs are incurred by ICANN in connection with 
the evaluation of requests for variant TLD labels, an additional aspect of the set of 
evaluation issues concerns whether there should be additional fees instituted to cover 
any relevant costs.   

The issues associated with treatment of variant TLD labels (i.e., possible states which 
may apply to a label) are discussed in section 5.1 above.  If label generation rules are in 

                                                           
33 http://ccnso.icann.org/policy/cctld-idn 
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place to determine how each type of variant label can be treated, the evaluation ICANN 
must perform is limited to confirmation that a request does not conflict with these 
requirements.  In the absence of established rules, the desired states for each of the 
labels would also need to be reviewed in evaluation.  Issues in such a case, in addition to 
those mentioned above, would include whether a certain variant TLD label in a 
requested state would create either a) a security or stability issue, or b) a user confusion 
or user experience issue.  State changes could require a specialized evaluation process 
in some cases. 

These issues would seem to be consistent across scripts.  While the sources and 
standards used by evaluators would vary according to the relevant script, the evaluation 
steps themselves would not differ. 

5.3.1.2  Variant Considerations in Existing Evaluation Processes 
In the event that requests for variant TLDs could be submitted, application processes 
would need to account for different types of construction of variant sets depending on 
the script or language involved.  In some cases, there might be a “base label” with 
variant labels associated, while in other cases, a set of variant TLD labels would be 
essentially equivalent in status.  Could one or more common formats for characterizing 
a requested set of TLD labels be developed, or would there need to be flexibility for 
each case to use a specific type of notation?  Another issue would concern whether 
there was a maximum size to a variant set, and what conditions might apply depending 
on the number of labels involved. 

If a set of variant TLD labels has been requested through the designated channel and 
validated through the established label generation rules, it would be expected that any 
other relevant TLD evaluation steps would proceed as usual.  This could include reviews 
for: 

a. String similarity – This review determines whether an applied-for TLD is so 
similar to an existing TLD or other applied-for TLD that it creates a probability of 
user confusion.   The string similarity review takes place in the interest of 
avoiding user confusion through the delegation of many similar TLD strings.  
Issues to be considered in the case where variant TLD labels are part of an 
application include: 
 

1. The methodology for considering the set of variant TLD labels in an 
application in the string similarity review against existing TLDs or other 
applied-for TLDs. 

2. Whether this review would differ based on the requested status (e.g., 
delegated, withheld) for any of the variant TLD labels in the application. 
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b. DNS stability – This review determines whether an applied-for TLD meets the 
technical string requirements.  An issue to be considered in the case where 
variant TLD labels are part of an application is whether all variant TLD labels 
included, whether intended for active operation in the DNS or not, would need 
to pass this review.  
 

c. Geographic names – The IDN ccTLD Fast Track process contains a 
meaningfulness requirement:  string(s) must be a meaningful representation of 
the name of the corresponding country or territory.  The gTLD evaluation 
process contains a review to determine whether evidence of government 
approval is provided where required.  In the case where variant TLD labels are 
part of an application, it would need to be determined whether such 
requirements would necessarily apply to every label contained in the 
application, including the variant TLD labels, or whether the requirements could 
be differentiated within the set. 
 

d. Technical/Operational/Financial capability – These reviews take place in the 
gTLD evaluation process and test whether the applicant has the requisite 
technical, operational, and financial capability to operate a TLD registry.  An 
issue to be considered here is whether there are additional reviews that ICANN 
should undertake concerning the variant management mechanism itself, i.e., to 
ensure that any guidelines or requirements concerning the applicant’s operation 
and management of the variant TLDs are anticipated and understood by the 
applicant, and taken into account in its plans. 
 

e. Registry services – This review takes place in the gTLD evaluation process and 
determines whether the registry services offered by the applicant might 
adversely affect DNS security or stability.    

 
As an additional consideration, the gTLD evaluation process contains a mechanism for 
formal objections to be filed to an application on certain limited grounds.  A formal 
objection by a party with standing will trigger a dispute resolution proceeding with an 
expert panel rendering a determination.    Objections can be filed on the grounds of:  (i) 
String Confusion, (ii) Legal Rights, (iii) Limited Public Interest, or (iv) Community.  In the 
case of an application containing variant TLD labels, an issue to be addressed is whether 
the set of labels in the application would always be maintained as a set for purpose of 
the objection and dispute resolution proceedings, or whether they could be split, so that 
only one of the labels within the set was at issue.  For instance, a withheld variant label 
that is added to the variant set by a mechanical rule might not be a basis for a valid 
objection to the original application, while an activatable label would be.  The outcome 
of a dispute resolution proceeding on an application containing variant TLDs could be a 
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determination either to: a) uphold the objection (i.e., the objector prevails), b) deny the 
objection (i.e., the applicant prevails) or c) create a split result where the objection was 
upheld only for certain TLD labels within the set, meaning that the label generation rules 
could be subject to an exception based on this determination.  If label generation rules 
are subject to exception, however, they no longer provide an algorithmic way to 
determine whether a variant arises from a given candidate label.   

5.3.2 Management of Established Variant TLD Labels 
When variant TLD labels are assigned to particular states, it will additionally be ICANN’s 
responsibility to maintain records concerning the set of names in these various states.  
The database of delegated top-level domains (i.e., the root zone database) is maintained 
and made publicly available via the IANA function.  To the extent that variant TLD labels 
are “blocked,” “withheld,” “allocated,” etc., lists of such labels would need to be 
maintained and updated, along with clearly documented procedures for the 
circumstances, if any, where states for these names may be changed. 

5.3.3 Delegation of Variant TLDs 
To the extent that requests for delegation of variant TLDs are approved, this would take 
place following the existing IANA delegation procedures.  This would include 
maintaining and publishing registration data for new TLDs, and distribution of updated 
zone file data according to current procedures.  Delegation requirements might need to 
be adjusted to, for example, synchronize changes to TLD records such that variant TLDs 
are updated at the same time, or ensure that re-delegation occurs at the same time.  
There may need to be an updated record format or new fields in the database to 
account for the association of one or more TLDs as variant TLDs.   

5.3.4 Contractual Provisioning  
Where a request including variant TLD labels is approved, ICANN may enter into an 
agreement with the relevant registry operator.  Certain frameworks are available for 
ccTLD operators, while gTLD operators are expected to enter into a standard registry 
agreement with ICANN.  These mechanisms can continue to be used for cases where 
there are variant TLD labels.  A set of issues to be resolved, however, concerns the 
requirements to be followed by operators of variant TLDs.  These could include: 

a. Whether there should be specific reporting requirements concerning 
the variant TLDs, and if so, what data should be reported. 

b. Whether specialized technical requirements for the management of the 
variant TLDs are necessary to support the security and stability of the 
DNS, and if so, how these requirements are specified 
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c. Whether specialized policy requirements for the variant TLDs are 
necessary to support a good user experience, and if so, how these 
requirements are specified. 

d. Whether specific service-level requirements for performance of the 
variant TLDs should be instituted, and if so, how these requirements are 
specified. 

e. Whether the registry fee structure should be adjusted to take into 
account the existence of the variant TLDs, and if so, how this should 
occur. 

The ability of the registry to require and enforce parallel registration operations further 
down the tree could be of concern. 

5.3.5 Security and Stability of the DNS 
Security considerations are relevant in making the determination of which code points 
are valid and should be used in top-level labels, as well as the criteria for considering 
requests for IDN variant TLD labels.  Similarly, such considerations are relevant in the 
determination of rules for assigning variant labels to particular states, and for the 
management of IDN variant TLD labels.  These have been discussed in the relevant 
sections above.  

Additionally, there has been significant study, consultation, and analysis in connection 
with expansion of the root zone to include new top-level domains.  Modeling, 
monitoring, and reporting will continue during, and after, the first application round of 
the New gTLD Program, so that root-scaling discussions can continue and the delegation 
rates can be managed. To the extent that variant TLDs are delegated, these would be 
incorporated in this modeling, monitoring and reporting.   

Delegation of any new top-level domains is conditional on the continued absence of 
significant negative impact on the security and stability of the DNS and the root zone 
system (including the process for delegating TLDs in the root zone).       

5.4 Registry / Registrar Operations 
Should a variant management mechanism for the top level be adopted by ICANN, this 
would entail a number of operational issues for registry operators as well as for 
registrars operating for the relevant TLDs.  Although not necessarily tied to ICANN’s 
management of the root zone, these are issues that would be expected to be resolved 
within the ICANN community.  These issues are discussed in this section. 
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5.4.1 DNS Resolution 
Depending on the variant management mechanism implemented, delegation of variant 
TLDs may mean the TLD operator is required to invest more resources in zone file 
generation and management of registrations in the variant TLDs.  This could also 
propagate to secondary name services and therefore increase the cost of running the 
DNS services for the registry.  The maximum investment is possible to describe by 
imagining that the variant management mechanism is implemented via mirroring 
without any sort of aliasing.  In this case, the TLD operator must in effect operate exactly 
as many zones as variants delegated, with a combinatorial number of labels in each such 
zone. 

To the extent that an aliasing behavior is desired or implemented in TLD registries, this 
will have an effect on TLD registry operations.  However, policies regarding DNS 
behavior could be difficult to enforce beyond the level in the DNS hierarchy at which the 
policy is defined. Specifically, a registry may choose to establish a policy wherein all 
possible variant labels will behave the same (return the same response in the DNS) at 
the TLD level of the DNS hierarchy. Although this can work in many cases at the TLD 
level, the DNS cannot enforce this policy on the delegated second-level domain names 
in the TLD. This can have a dramatic effect on the user experience. 

In the event some sort of active variants were to be supported in the root zone by using 
DNAME, the root name servers would need to be able to support the additional load 
represented by CNAME synthesis due to requests from DNAME-incapable DNS clients.  
Given the current provisioning and traffic mix in the DNS, and laboratory tests, this 
additional load does not appear to be a concern compared to some of the other effects 
of supporting variants in the root.  This belief has not been (as far as can be determined) 
verified empirically on the Internet.  Adding a DNAME to the root would undoubtedly be 
an innovation, akin to the decision to sign the root using DNSSEC (though with perhaps 
fewer risks).   

5.4.2 Registration Process 
The shared registration system (SRS) is a critical registry function enabling multiple 
registrars to provide domain name registration services in the TLD.  This in many cases 
includes the EPP (Extensible Provisioning Protocol) interface between the registry and 
the registrars.  Extensions to EPP may be required to enable registration of second-level 
domain names under the applied-for TLD and the variant TLDs.  Without a standard 
implementation of such extensions, registrars may face complexities in interfacing with 
these registries implementing different extensions.   

Although not a variant issue per se but a general IDN issue, indications of the relevant 
script(s) and language(s) for registered domain names may need to be incorporated by 
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the TLD registry.  As noted in the Devanagari case study report, it may be sufficient in 
some cases to tag a domain name with either its script or its language; however, a script 
may support a number of languages and in some cases, a language uses more than one 
script. Moreover, as section 4.1 describes, it is possible to construct a system in which 
neither language nor script is the identifier needed. The technical issue is that there is 
no uniform way to do this in the standard EPP protocol used.    

This issue also affects registrars in two ways. To the extent there is no standard, a 
registrar will have to implement all EPP extensions that various registries may choose to 
specify to resolve this issue. For those ccTLDs that do not use EPP, registrars will have to 
implement whatever is required in order to support that ccTLD. 

In addition, when registrars are present they are the interface to the registrant. 
Registrars that choose to support multiple scripts and languages will need to develop 
user interfaces that facilitate and simplify the identification of the script and language in 
use by a registrant, and permit the registrant to understand its choices with respect to 
the names it is actually contracting to operate when registering a name subject to 
variants. 

Accordingly, it appears that a successful registration process in IDN variant TLDs will 
require significant coordination, perhaps including an additional OT&E process, with 
registrars. 

It will be the task of the registry operator to formulate policies on how domain names 
are managed in the variant TLDs.  For example, policies could cover whether the same 
domain name under the variant TLDs must be associated with the same registrant.  
Consideration would also need to be given to registry policies on expiration, deletion, 
and transfer of registered names.  It will also be for the registry operator to determine 
the appropriate pricing models for such registration offerings.  The relevant policies 
concerning registrations in the variant TLDs, as well as the relevant IDN tables or other 
reference documents used for domain name registration at the second or lower levels, 
should be made available to the public.  A failure of consistency in these policies across 
registries could have disastrous effects on user experience; see section 5.2.5 for more 
discussion.  

Careful attention to registration policies for IDN variant TLDs is essential to minimize 
user confusion and opportunities for abusive registrations. It is expected that the IDN 
Implementation Guidelines34 will be followed in this regard.  The Guidelines are a list of 
general standards for IDN registration policies and practices that are designed to 
minimize the risk of cybersquatting and consumer confusion, and respect the interests 

                                                           
34 http://www.icann.org/en/topics/idn/implementation-guidelines.htm 
 

http://www.icann.org/en/topics/idn/implementation-guidelines.htm
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of local languages and character sets. Registries seeking to deploy IDNs under their 
agreements with ICANN have been authorized to do so on the basis of the Guidelines.  
The Guidelines are, as of this writing, silent on the practice of the management of 
variants. 

5.4.3 Whois (Domain Name Registration Data Directory Service) 
As discussed in several case study reports, there are two sets of issues related to IDN 
variant TLDs and Whois:  the first set of Whois issues are caused by the introduction of 
IDNs in general, the second set of issues are caused specifically by variants. Both sets of 
issues need to be addressed to ensure a good and consistent user experience for 
querying domain name registration data.   

 5.4.3.1  Issues that IDN introduces to Whois services in general 
As noted in several reports (Arabic, Chinese, Devanagari), the critical Whois issue facing 
the deployment of IDNs is the fact that the standard WHOIS protocol (as defined by RFC 
391235) has not been internationalized, which means there is no standard way to 
indicate the character encoding in use.  

The WHOIS protocol is a simple request and response transaction: a domain name is 
submitted to a server and output is returned. A consequence of the lack of a 
standardized approach to internationalization is an increasing number of local, regional, 
and proprietary solutions that attempt to address the issue. This variability has a 
dramatically adverse effect on the user experience. 

As the adoption of IDNs becomes more prevalent, Internet users will expect to be able 
to register domain names as well as registrant names and addresses in their native 
languages, using familiar scripts (character sets). This adoption is already well underway, 
increasing the priority to address this issue.  

These issues are noted in recent reports from ICANN’s Security and Stability Advisory 
Committee (such as SSAC 05136), in reports of other ICANN supporting organizations and 
advisory committees, and most recently by the WHOIS review team.37 As the adoption 
of IDNs becomes more prevalent, this issue needs to be addressed as a priority.  

                                                           
35 http://www.rfc-editor.org/rfc/rfc3912.txt 
 
36 http://www.icann.org/en/committees/security/sac051.pdf 
 
37 http://www.icann.org/en/reviews/affirmation/whois-rt-draft-final-report-05dec11-en.pdf 
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 5.3.4.2  Issues that IDN variants introduce to domain name registration  
   directory services specifically 

Also noted in several reports (Arabic, Chinese, Devanagari), the introduction of variant 
TLDs may cause a paradigm shift for some Whois users.  Where currently there is 
typically a one-to-one lookup for a Whois record against a domain name, this might no 
longer be true in the case of variant TLDs.  To illustrate this point further, consider the 
following domain label3.label2.label1., where each label also has p, q, and r variants 
respectively, thus the total number of variants for this domain is p*q*r, and each 
possible variant domain could have different statuses (e.g. withheld, allocated, 
delegated, blocked, etc.).   

The key issue here is to determine the correct response to a Whois query for a domain 
name lLabel3i.label2j.label1k. (request to information for label1k in the case of the 
root).   

These issues require careful examination to determine to what extent data elements 
should be separated in the Whois database, and to what extent certain elements must 
always be subject to a joined relationship.  Specific issues to be worked out include:  

a. For a Whois query for a domain name with variant labels, should the variant 
labels be included in the response? What if the language or script of the variants 
cannot be understood or displayed by the user making the request? How could 
this be determined, since the WHOIS protocol does not have a mechanism to 
signal encoding? 

b. If a variant U-label is withheld-only (i.e., not active) in the registry database, 
should a Whois request for the domain name return a referral indicating the 
name is a variant of another name or return the response for the other name? 
or should the response indicate that the name does not exist? 

c. Is there a need for an additional query/service, which returns the Label Variant 
Set against a requested domain name? Should such a service also return the 
status of each label in the set? 

d. Would the response against a blocked variant label be different from responses 
to labels with other status (withheld, allocated, etc.)? 

e. Will the creation and expiration dates of the Variant Label Set be inherited from 
the fundamental label, as suggested? If yes, then if a variant label is either 
added or changes its state, how will this information be part of the Domain 
Name Registration Data? Would history be maintained and communicated for 
such changes? 
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5.4.4 Data Escrow 
As noted by the Chinese case study team, a specific data format has been specified in 
the gTLD Applicant Guidebook for registries to submit the registration data to the data 
escrow service provider.  The data escrow format currently supports variants; however 
modifications may be needed in light of the issues detailed in this report to support 
variant TLDs. 

5.4.5 Rights Protection Mechanisms 
The use of variant TLD labels (and variant domain names in these TLDs) may have an 
impact on existing rights protection mechanisms such as the Uniform Domain-Name 
Dispute Resolution Policy (UDRP).38  The UDRP is a policy for resolving disputes arising 
from alleged abusive registrations of domain names (for example, cybersquatting), 
allowing expedited administrative proceedings that a trademark rights holder initiates 
by filing a complaint with an approved dispute resolution service provider.  Typically, a 
UDRP complaint will concern only the name registered at the second level.  In the case 
where domain names exist in variant TLDs, an issue to be resolved concerns whether 
corresponding names in all TLDs in a variant set are considered together in a UDRP 
proceeding, or whether and under what circumstances there could be separate 
considerations or determinations on some names in the set.  Where certain names have 
different statuses (e.g., blocked, allocated), this could also have an impact on such a 
case.  The applicable fees in UDRP proceedings might also be adjusted to take into 
account the existence of registrations in variant TLDs. 

A policy whereby a set of variant names is always maintained may force registrants into 
dispute resolution proceedings as a result of registry variant practice (such as 
automated generation of a variant label set).  However, a practice of splitting and 
making separate determinations within the set runs counter to the interest in 
maintaining a straightforward and predictable process, particularly since the existence 
of variant labels suggests that the contents of the set are equivalent in some way.   

Note also that a UDRP complainant will generally present trademark or rights data that 
might not necessarily follow the same label generation rules used for the root zone or 
by the registry.  A complainant must prove that the domain name in question is identical 
or confusingly similar to a trademark or service mark in which the complainant has 
rights.  Although a panel might make use of existing variant rule references in 
considering a case, it is more likely that a panel would refer to standards related to 
trademark law for determining what is “identical or confusingly similar,” and such 
standards would be an important consideration relating to issues in this area. 

                                                           
38 http://www.icann.org/en/udrp/udrp.htm 
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A determination in a UDRP case may result in cancellation or transfer of a domain name, 
or no action if the complainant does not prevail.  Issues to be resolved in this context 
concern whether a determination would also need to apply to the entire variant set, or 
whether could there be a split decision concerning the treatment of names (e.g., a 
decision that of the set example.X, example.Y, and example.Z, only labels example.X and 
example.Y infringe the complainant’s rights while example.Z does not).39  There are 
implications here similar to those discussed concerning the objection process for gTLD 
applications, in that given that a determination of this type (as well as a court decision) 
could create an exception to the established label generation rules 

In addition, the existence of variant TLDs may have an impact on rights protection 
mechanisms being instituted as part of the New gTLD Program.  New gTLD registries are 
required to introduce certain rights protection mechanisms during their startup phases.  
These services concern second-level registrations, and include a sunrise period and a 
trademark claims service to provide notice to a potential registrant where a domain 
name matches a trademark that has been recorded in the Trademark Clearinghouse.  
These services use a specified definition of identical match.  To the extent that 
registrations take place in variant TLDs according to the registry policy, these rights 
protection processes should take into account the existence of variant TLD labels.  For 
example, if a trademark holder is eligible to register example.X in the sunrise period, 
they could also be eligible to register example.Y (or ineligible, if registry policy blocks 
such registrations). Consideration would need to be given to the definition of identical 
match and the possible incorporation of variant labels into the criteria for triggering a 
Sunrise or Trademark Claims notice. 

The Uniform Rapid Suspension (URS) system is a complement to the UDRP, to be used 
when suspension of a domain name is the desired outcome.  Accordingly, the issues 
discussed above also apply here.   

The (Trademark) Post-Delegate Dispute Resolution Policy (PDDRP) addresses infringing 
uses of a TLD post-delegation.  However, outcomes under this policy would take the 
form of, for example, remedial measures to protect against future infringing 
registrations, suspension of new domain name registrations, or, in extraordinary 
circumstances, termination of the Registry Agreement.  Since domain name registrants 
are not a party to the action, a recommended remedy would typically not take the form 
of deleting, transferring, or suspending domain name registrations.  In the case of 
variant TLDs, the issues to be considered here would concern whether the penalties 
could apply to just one of the variant TLDs, or would necessarily apply to all.     

                                                           
39 Though beyond the scope of issues related specifically to IDN variant TLDs, this scenario becomes more 
complex where registry policy provides for some relationship between the names example1.X, 
example2.X, example3.X which could also be the subject of dispute resolution proceedings. 
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5.4.6 Security/Stability Considerations for TLD Registries/Registrars 
Security and stability considerations should also be relevant to registry operators, 
registrars, data escrow agents, or other service providers.  As noted in the Devanagari 
case study report, a suggestion for evaluating variant policies and their implementation 
is to log, review, and analyze DNS query traffic. Specifically, the behavior of applications 
and services, and sometimes the users that use them, can be inferred from traffic 
patterns found in sequences of DNS queries and responses.  For example, registries 
could review DNS traffic of the TLD for queries of non-existent domains (i.e., in DNS 
terms reviewing the NXDOMAIN responses).  An analysis of these transactions may 
indicate that language tables are incomplete or that variant usage is not as expected.  
Conversely, an analysis of the queries that indicated that certain type of variant is not 
being queried (while the fundamental label or other type of variant is) could indicate a 
superfluous variant category. 

Providing a consistent, uniform, and non-surprising (i.e., user expected) experience to 
the user is an essential component of stability. DNS transaction logs could provide some 
insight into user expectations and thus some ability to confirm that the needs of a user 
community are being met. 

Some TLD registries may wish to consider partnerships with second-level domain 
holders to continue the analysis at lower levels in the DNS hierarchy. 

5.5 Synopsis of Issues 
As is clear from this section, there are a number of complex issues in the operational 
area that registries, registrars, and other providers should be aware of to facilitate 
successful operation of variant TLDs.  As noted by the Latin case study team and others, 
the impact of variant TLDs on registries and registrars may be highly dependent upon 
differing implementation methods, and any proposed implementation will require 
broad stakeholder participation to ensure that registries and registrars provide stable, 
secure, consistent, and unambiguous DNS operations. This includes the greatest 
possible clarity in communication and understanding of variant TLDs, to limit IDN end 
user, registrant, registrar, and registry confusion. 

Areas of application behavior, resolution and registration services, WHOIS service, and 
business logic all need to be examined in order to determine if these objectives are 
achievable. 
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6 Other Related Issues:  Code points currently not permitted in 
 the root zone 
The gTLD Applicant Guidebook currently restricts U-labels for inclusion in the root zone to those 
in Unicode General Categories Ll, Lo, Lm, or Mn; this is anticipated to be expanded to include 
Mc, in order to support a number of letters that are necessary to permit Devanagari strings.  In 
any case, the general principle for inclusion in the root zone is that only letters be permitted; 
this principle is an attempt to stick to the spirit of RFC 1123, which says that labels in the root 
zone “will be alphabetic”.  At the time of writing of RFC 1123, “alphabetic” really just meant the 
letters a-z and A-Z, because nothing outside the US-ASCII character set was contemplated. 
 
The current restrictions prohibit a number of code points that are (in at least some 
circumstances) permitted under IDNA2008, and might be desirable for writing strings in some 
languages.  Prominent among these are U+200C, ZERO WIDTH NON-JOINER, and U+200D, ZERO 
WIDTH JOINER (both of which are in General Category Cf).  Also prohibited are all digits, 
including digits used with scripts other than Latin (at the very least, those code points in General 
Category Nd).  It is beyond the scope of the present report to evaluate whether the root zone 
ought to permit U-labels with these code points, but each of these categories raises issues with 
respect to variants.  This section provides a very brief discussion of the issues that might be 
raised by changing these rules.  The discussion here is incomplete because the prohibitions 
remain in place; but if those prohibitions were lifted, it would entail a great deal of work to 
explore these issues completely and to understand the potential side effects. 
 
The zero-width joiners are two special controls that are used to indicate connections or 
disconnections within a string when the string is rendered; they are normally used only in scripts 
that require complex text layout (such as Arabic and Indic scripts).  They are called “zero-width” 
because they take no space when displayed, and cannot be seen under normal conditions.  Their 
effects, however, can sometimes be observed in the shape of characters that follow them.  (In 
some contexts, however, like in a Latin string, the effect of the zero-width joiners is entirely 
invisible.) 
 
ZERO WIDTH NON-JOINER, U+200C (“ZWNJ”) is used to prevent rendering of a connection 
between two characters (usually letters) that otherwise would be joined.  It is often used in 
Arabic-script writing in order to prevent two letters from joining to one another (and thus using 
the medial form) when they should not be so joined (for instance, because there is a word break 
at that location).  ZWNJ is already constrained in its use in U-labels by a CONTEXTJ rule in 
IDNA2008; the Arabic case study report, however notes, “The ZWNJ in a few cases is still not 
visible to all users (e.g., U+0637, U+0638, U+069F, U+06BE, and U+06FF). A comprehensive 
analysis of Unicode Arabic Script Code Charts is needed to find any additional cases. This process 
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should be repeated as the Unicode gets updated.” (item 21.b.iii, p7)  One can glean from this 
that Label Generation Rules permitting ZWNJ in TLD labels would probably need a fairly 
complicated contextual rule constraining ZWNJ to very specific cases, and likely generating 
variant labels that also excluded the ZWNJ, in order to ensure that a collision could not happen 
with such a ZWNJ-free label.  Note that the Devanagari case study (4.3.2, p 23) makes it clear 
that generating such rules could be extremely difficult, because the limits do not appear to be 
bounded. 
 
ZERO WIDTH JOINER, U+200D (“ZWJ”) is used in the opposite case as ZWNJ: it makes two 
characters join together when normally they would not.  The Devanagari case study report 
provides an example (section 4.3.1, p 22) of how ZWJ might be used.  It is worth noting that 
Unicode NFC does not normalize these two different ways of entering the same abstract 
character, so U-labels containing these two different sets of code points would not be 
equivalent to one another.  It is entirely possible that every use of ZWJ in a U-label would 
produce variants of this sort, and it would require a great deal of language-specific study for 
those languages using ZWJ to specify what variant relationships should be included in any Label 
Generation Rules.  Just as in the case of ZWNJ, it is likely that variants excluding the ZWJ would 
probably also be necessary, in order to prevent collisions with a label that could be typed only 
by omitting an invisible character. 
 
The digit cases are also somewhat problematic.  To begin with, there are two sets of Arabic-Indic 
Digits (known as Arabic-Indic Digits and Extended Arabic-Indic Digits).  Because of the ways 
these appear, they are prohibited (by an IDNA2008 CONTEXTO rule) from appearing in the same 
label; apart from that, any type of digit could be combined with any other type in a label.  In this 
case, the issue is that applications will sometimes, in a locale-sensitive way, convert localized 
forms of digits to their standard “ASCII range” counterparts (i.e.U+0030..0039) for storage, and 
back to localized versions for the purposes of display.  This ensures that arithmetic operations 
always work consistently (among other advantages); the principle sometimes goes by the slogan 
“a digit is a digit.”  If the prohibition against code points in General Category Nd were to be 
lifted, then a large number of variants could result across all the scripts permitted in the root 
zone. 
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7 Discussion of Potential Additional Work 
Additional work concerning IDN variant TLDs could focus on taking the issues identified in this 
issues report and identifying potential solutions to these problems. Any potential solutions 
identified would need to be analyzed to establish whether they satisfactorily address the sets of 
issues identified here, and measured on their viability from policy, technical, security, user 
experience, and operational perspectives. 

It should be emphasized that there should be no assumption that acceptable solutions are 
available or can be developed to address the wide range of issues identified in this report, or 
that can satisfy the wide range of community expectations regarding which variant IDN TLDs 
may be delegated.  

In analyzing the issues presented above, the team identified several areas where additional 
work could occur toward developing solutions. The immediate follow-on phase to this report 
could be a short phase involving review of these items and development of a plan (including a 
proposed timeline and budget) for each element.  Some possible actions in the various areas are 
identified here for consideration. 

7.1 Developing a Label Generation Ruleset specification 
Based on the analysis, a general requirement for all approaches considered is the need to use a 
tool to machine-generate sets of variants in accordance with formal label generation rules. 

ICANN currently manages a voluntary repository of "IDN Tables," of which some contain 
instructions on computing variants. While some language communities have formalized the 
formatting of their tables, there is no single established format that can accommodate the 
various rulesets in existence today. 

Recognizing that deployable solutions will require such tables, it is clear that the effort would 
benefit from the standardization of a table format that would allow software implementers to 
easily and predictably generate variants. Such a table format should be developed with input 
from potential implementers and other interested parties, possibly through a technical 
standards body such as the IETF. In conjunction with this work, ICANN could facilitate a 
reference implementation of software that demonstrates how the table format could be 
utilized. Such work could be used internally within ICANN for its processes when handling 
variants for the root zone. 

7.2 Developing a process for label generation 
Considering the potential options and considerations presented in Section 4 (Options for the 
Establishing Label Generation Rules), an analysis of how labels could be generated for the root 
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zone (including variant label generation) needs to be conducted to arrive at a suitable approach. 
This needs to be developed in a way that accords with ICANN’s established processes. 

7.3 Examining the feasibility of whole-string variants 
While the focus of the work reported here was on character-level variants, for some languages, 
there may be deterministic approaches available to calculating and deriving sets of whole string 
variants. The report has identified significant challenges to dealing with whole-string variants, 
but there is more work to be done to analyze potential approaches in this area if whole-string 
variants are to be considered for implementation in the root. 

7.4  Enhancing visual similarity processes 
For some communities, it appears possible to identify variants that are considered visually 
similar. This could include development of resources for addressing visual similarity within a 
particular script, or in cross-script cases, as recommended by the Greek case study team report.  
This would potentially serve as valuable input into existing visual similarity processes, which 
would benefit from predictable and repeatable processes that are transparent to a user of the 
process.  

7.5  Examining the feasibility of mirroring 
Section 5 identified a number of potential treatments (states) of particular variant labels. One 
potential treatment is the use of "mirroring," whereby two or more labels use some technology 
(currently a choice between CNAME and DNAME DNS aliasing records) to ensure they provide 
the same result in the Domain Name System.   

Another alternative to using specialized DNS records is to use “parallel provisioning,” whereby 
regular delegations are made using NS records, and the manager of the zone is obligated via 
contractual or other means to ensure the contents of those zones are synchronized. 

Due to the distributed nature of the DNS, using these approaches is a complex challenge, as it 
seems difficult to ensure consistency (both vertically and horizontally) throughout the DNS tree. 
Even if the DNS issues could be solved, application protocols that use the DNS (e.g., the Web, e-
mail) would not know of this special relation between the names, making them fail to deliver 
the expected result.  Additionally, it appears challenging to ensure appropriate software support 
for products which rely on the DNS but do not have proper understanding of the many-to-one 
domain name relationship that mirroring creates. Finally, it seems mirroring requires a number 
of actors (some of which are not in direct relation with the registrant/registrar/registry) to act 
appropriately and with knowledge of the variant relation of the names to obtain the expected 
result. 
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The team recommends studying the feasibility of mirroring, in cooperation with technical bodies 
as necessary. 

7.6  Examining the feasibility of  variant management without 
 mirroring 
Another potential treatment described in section 5 is to consider two or more labels, with their 
management conducted by the same party (i.e. a single registry); but with no requirement that 
the contents of the zones and the delegations therein be strictly mirrored. This treatment 
recognizes potential legitimate reasons for the contents of the various zones to diverge, while 
still ensuring that the risk of user confusion is minimized by having one party manage eligibility 
and delegation policy between these multiple zones. This allows contextual rules to be 
established that address local requirements concerning confusability, e.g., allowing a website for 
one name and another different website for the variant. 

This approach could be studied to identify the feasibility and user experience implications as an 
option to activating variant labels in the root. 

7.7  Assessing impacts on existing gTLD and Fast Track operations 
Recognizing that one desired output of this project is to provide a means for variants to be 
introduced into the root zone, the impact of proposed variant solutions would need to be 
considered with respect to the evaluation processes established in the Fast Track and New gTLD 
programs.  

Specifically, the label generation rules discussed above would need to be implemented into the 
new gTLD questions, criteria and evaluation process.  A new variant evaluation process could be 
necessary to address variant requests and to address pending (declared) variant strings from the 
first round of applications.  Review steps would need to be specified for handling requests for 
IDN variant labels, e.g., a review for any negative impact on DNS security or stability. 

For the IDN Fast Track process, additional policy work might make variant TLDs available in 
accordance with label generation rules. The IDN Fast Track Implementation Plan would be 
modified to accommodate the new policy. 

7.8  Assessing impacts on ICANN and IANA processes 
As manager of the contents of the DNS Root Zone, ICANN would need appropriate processes to 
implement the requirements of any variant solutions to be adopted. This would include 
adaptation of the relevant IANA processes to incorporate the concept of variants, and ensuring 
the equivalence is reflected in its operations. This could involve ensuring the root zone changes 
are executed in tandem when variants are involved, and ensuring that labels are assigned to the 
same manager as appropriate. The IANA WHOIS and website would also likely need to be 
updated to demonstrate any linked relationship between multiple labels, and the status of 
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various labels that have been generated through the application of the Label Generation Rules. 
Similar considerations apply to examining the impact on other (non-IANA related) ICANN 
processes that currently deal with TLDs, particularly gTLDs. 

 

  

  

 



82 

 

Appendix 1:  The Case Study Team Reports 
 
Arabic 

Case Study Team Issues Report:   
http://www.icann.org/en/topics/new-gtlds/arabic-vip-issues-report-07oct11-en.pdf 

Public Comments:   
http://forum.icann.org/lists/idn-vip-arabic/ 

Summary and Analysis of Comments:   
http://forum.icann.org/lists/idn-vip-arabic/ 

Chinese 

Case Study Team Issues Report:   
http://www.icann.org/en/topics/new-gtlds/chinese-vip-issues-report-03oct11-en.pdf 

Public Comments:   
http://forum.icann.org/lists/idn-vip-chinese/ 

Summary and Analysis of Comments:   
http://www.icann.org/en/public-comment/report-comments-idn-vip-chinese-29nov11-en.pdf 

Cyrillic 

Case Study Team Issues Report:   
http://www.icann.org/en/public-comment/idn-vip-cyrillic-06oct11-en.htm 

Public Comments:   
http://forum.icann.org/lists/idn-vip-cyrillic/ 

Summary and Analysis of Comments:   
http://www.icann.org/en/public-comment/report-comments-idn-vip-cyrillic-29nov11-en.pdf 

Devanagari 

Case Study Team Issues Report:   
http://www.icann.org/en/topics/new-gtlds/devanagari-vip-issues-report-03oct11-en.pdf  

Public Comments:   
http://forum.icann.org/lists/idn-vip-devanagari/ 

http://www.icann.org/en/topics/new-gtlds/arabic-vip-issues-report-07oct11-en.pdf
http://forum.icann.org/lists/idn-vip-arabic/
http://forum.icann.org/lists/idn-vip-arabic/
http://www.icann.org/en/topics/new-gtlds/chinese-vip-issues-report-03oct11-en.pdf
http://forum.icann.org/lists/idn-vip-chinese/
http://www.icann.org/en/public-comment/report-comments-idn-vip-chinese-29nov11-en.pdf
http://www.icann.org/en/public-comment/idn-vip-cyrillic-06oct11-en.htm
http://forum.icann.org/lists/idn-vip-cyrillic/
http://www.icann.org/en/public-comment/report-comments-idn-vip-cyrillic-29nov11-en.pdf
http://www.icann.org/en/topics/new-gtlds/devanagari-vip-issues-report-03oct11-en.pdf
http://forum.icann.org/lists/idn-vip-devanagari/
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Summary and Analysis of Comments:   
http://www.icann.org/en/public-comment/report-comments-idn-vip-devanagari-29nov11-
en.pdf 

Greek 

Case Study Team Issues Report:   
http://www.icann.org/en/topics/new-gtlds/greek-vip-issues-report-07oct11-en.pdf 

Public Comments:   
http://forum.icann.org/lists/idn-vip-greek/ 

Summary and Analysis of Comments:   
http://www.icann.org/en/public-comment/report-comments-idn-vip-greek-29nov11-en.pdf 

Latin 

Case Study Team Issues Report:   
http://www.icann.org/en/topics/new-gtlds/latin-vip-issues-report-07oct11-en.pdf 

Public Comments:   
http://forum.icann.org/lists/idn-vip-latin/ 

Summary and Analysis of Comments:   
http://www.icann.org/en/public-comment/report-comments-idn-vip-latin-29nov11-en.pdf 

 

 

http://www.icann.org/en/public-comment/report-comments-idn-vip-devanagari-29nov11-en.pdf
http://www.icann.org/en/public-comment/report-comments-idn-vip-devanagari-29nov11-en.pdf
http://www.icann.org/en/topics/new-gtlds/greek-vip-issues-report-07oct11-en.pdf
http://forum.icann.org/lists/idn-vip-greek/
http://www.icann.org/en/public-comment/report-comments-idn-vip-greek-29nov11-en.pdf
http://www.icann.org/en/topics/new-gtlds/latin-vip-issues-report-07oct11-en.pdf
http://forum.icann.org/lists/idn-vip-latin/
http://www.icann.org/en/public-comment/report-comments-idn-vip-latin-29nov11-en.pdf
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Appendix 2:  Terminology 

Purpose  
This section includes newly-introduced terms from this report, and terms that may be unfamiliar 
to the casual reader. 

To the extent possible, we have tried to rely on documents that have been developed outside 
ICANN.  The primary documents used are: 

• Internationalized Domain Names for Applications (IDNA): Definitions and Document 
Framework (RFC 5890); 

• Terminology Used in Internationalization in the IETF (RFC 6365); 
• The Unicode standard including the standard annexes (Unicode 6.0.0; a new release of 

Unicode, 6.1.0, is slated for release in February 2012.  Definitions here are based on 6.0, 
but do not appear to be different from the beta 6.1 release as of this writing); 

• Each of the six Variant Issues Project case study reports (available from 
http://www.icann.org/en/announcements/announcement-4-03oct11-en.htm). 

If there are script-specific terms, they are copied directly from their respective reports, and 
contain cross-references and discussion that makes sense only in the context of those reports.  
They are included here for convenience, and copied verbatim (with the exception of the 
introduction of the report name) in order to avoid the accidental introduction of any errors in 
meaning. 

Methodology 
In this section, we describe our proposed methodology for synthesizing these definitions.    

1. If a term is defined in RFC 5890, RFC 6365, the Unicode Standard, we copy the 
relevant definitions from those documents and also refer to those documents.  The 
reader is strongly advised to read the text in the original, because the sense of the 
term may be obscured by being taken out of its context.   

2. For case study specific terms, we copy directly from the definition in the relevant 
case study report.  

3. Where terms are defined differently by different teams, the terms have been 
harmonized and, if need be, expanded upon to weld them into a single term useful 
for the unified report. 

4. If a term is defined in one case study report but is generally useful, it has been taken 
over by this document.  We have made no effort to remain consistent with the use 

http://www.icann.org/en/announcements/announcement-4-03oct11-en.htm
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of that term in the original report on the grounds that this approach is really just a 
variation of (3), above. 

It is important to note that these terms are sometimes inspired by, but do not apply to, the 
specific script team reports; if those reports needed special terminology, they used it, as well as 
the common set of definitions originally proffered for their use.  Some terms will not be useful 
for every script. 

Format of the Definitions in this Document 
In the body of this document, the source for the definition is indicated with a footnote, at the 
end of the definition itself.  Many definitions do not have such a footnote, which means that the 
definitions were crafted originally for this document or are merged from more than one source 
as noted above.  For case study specific teams, they are noted with a short form for the team 
report (e.g. “Arabic-VIP”).   

There may be commentary and examples after the definitions, delimited by the presence of the 
footnote.  In those cases, the part before the footnote is the definition that comes from the 
original source, and the part after is commentary that is not a definition (such as an example or 
further exposition).  Terms created for this document have such discussion demarcated by the 
label “Discussion:” 

When terms appear for the first time in the body of the report, they are set in bold type. 
Thereafter, they are used as normal.   

Abstract Character:  A unit of information used for the organization, control, or   
  representation of textual data.40 

 
Activation:  An action taken on a given label with respect to a zone, indicating 

that there are DNS resource records at that node name; or else 
that there are subordinate names to that name, even though 
there are no resource records at that node name.           
 

A-label:  An ASCII-Compatible Encoding form of an IDNA-valid string.41  The full 
definition for A-label is in RFC 5890, together with the definition of U-
label and some ancillary definitions.  The reader is urged strongly to see 
that document; most of the following discussion and more is in RFC 
5890, and trying to talk about IDNA without understanding that 
document is likely to fail to use certain terms correctly.  A-labels must 

                                                           
40 Unicode Standard, section 3.4, D7 
 
41 RFC 5890 
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be complete labels: IDNA is defined for labels, not for parts of them and 
not for complete domain names.  By definition, every A-label begins 
with the IDNA ACE prefix, "xn--", followed by a string that is a valid 
output of the Punycode algorithm (RFC 3492) and hence a maximum of 
59 ASCII characters in length.  The prefix and string together must 
conform to all requirements for a label that can be stored in the DNS 
including conformance to the rules for LDH labels.  Apart from all the 
other requirements, a string can only be an A-label if it can be decoded 
into a U-label using the Punycode algorithm, which U-label can be 
decoded back into the same original string using the same algorithm. 
 

Alias:     An action performed on a given label with respect to a zone, using  
  techniques that redirect a name or a tree, effectively substituting one  
  label for another during DNS lookup. 
 

Allocation:   An action taken on a label with respect to a zone, whereby the label is  
  associated administratively to some entity that has requested the label.   

 

Alternative code  
points: 

Code points that may be used as alternatives for code points in the zone 
repertoire.  For full discussion, see section 4 of the report. 

 

Assigned Code Point:  A mapping from an Abstract Character to a particular Code Point in the  
  code space.42 
 

Blocking:   An action taken on a given label with respect to a zone, according to  
  which the label is unavailable for allocation to anyone.   
 

Character Variant:  In a Language Variant Table, a “Character Variant” is an entry on the 
second list of code points corresponding to each Valid Code Point and 
providing possible substitutions for it. Unlike the Preferred Variants, 
substitutions based on Character Variants are normally withheld but not 
actually registered (or “activated”). Character Variants appear in column 
3 of the Language Variant Table. The term “Code Point Variant” is used 
interchangeably with this term.43  This term should be used only when 
discussing implementations of RFC 3743. 
 

                                                           
42 Unicode Standard, section 2.4 
 
43 RFC 3743, section 2.1.14 
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Code Point:   A value in the Unicode code space.44  The meaning here is restricted to  
  meaning D10 in the Unicode Standard, section 3.4. 

 

Code Point  
Repertoire for 
the Zone: 

Also known informally as a zone repertoire. A set of code points 
permitted in U-labels in a zone.   
 

 

Code Point Variant 
Rules: 

The rules containing the alternative code points, the code point variant 
status, and any flags indicating degrees of freedom in the code point 
variant rules.  See section 4 of the report for a full discussion. 
 

Code Point Variant  
Status: 

The status of a label that results from the alternation of the alternative 
code point for a given code point in the zone repertoire.   See section 4 
of the report for a full discussion. 

 
Delegation:  An action taken on a given label with respect to a zone, indicating that 

in that zone there are NS resource records at the label.    
 

Domain:  A domain is identified by a domain name, and consists of that part of 
the domain name space that is at or below the domain name which 
specifies the domain.45  The Domain Name System (DNS) name space is 
a tree structure, with each node and leaf on the tree corresponding to a 
resource set.  These nodes are identified by their names, and the 
portion that is so named (including everything underneath) is called a 
“domain”.  For example, the domain “example.com.” is inside the 
“com.” domain, which is inside the zero-length root domain (“.”).  The 
names “two.one.example.com” and “one.example.com” are both in the 
“example.com” domain, with “two.one.example.com” also being inside 
“one.example.com”.  Not every domain is a zone.  

 
Exchangeable: A relationship between two or more code points such that a user may 

treat them as though they fill the same role in a U-label.  See section 3 
for discussion of the classification of variant relationships. 
 

Font:  A collection of glyphs used for the visual depiction of character data. A 
font is often associated with a set of parameters (for example, size, 

                                                           
44 Unicode Standard, section 3.4 
 
45 RFC 1034, section 3.1 
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posture, weight, and serifness), which, when set to particular values, 
generate a collection of imageable glyphs.46  For discussion of IDNs, it is 
important to remember that the font is not a property of a code point, 
and is not something that can be evaluated at registration or lookup of 
an IDN. 
 

Fundamental Label:  The U-label used as the basis for producing the Variant Label Set. 
Discussion: In many cases, this will be the label received as a request for 
allocation by the registry for the zone.  In cases where the Label 
Generation Rules are implemented using a Language Variant Table, the 
Fundamental Label must be constructed entirely from Valid Code Points 
(and might not be the label received in a request for allocation). 
 

Glyph:  (1) An abstract form that represents one or more glyph images. (2) A 
synonym for glyph image. In displaying Unicode character data, one or 
more glyphs may be selected to depict a particular character. These 
glyphs are selected by a rendering engine during composition and 
layout processing.47  Note that RFC 6365 uses, roughly, the second of 
these: A glyph is an image of a character that can be displayed after 
being imaged onto a display surface.48 
 

Glyph Image:   The actual concrete image of a glyph representation having been  
  rasterized or otherwise imaged onto some display surface.49 

 

Homoglyph: An abstract character or a conceptual character that is represented with 
the same glyph as another abstract character or conceptual character. 

Homograph: Entity sharing a written form with another entity.  This term is 
sometimes used to refer to characters written the same way, but it has 
a well-established meaning with respect to words within a language.  It 
is better to use homoglyph instead.  See section 3.4.3. 

Internationalized The term “Internationalized Domain Label” or “IDL” will be used instead 

                                                           
46 Unicode Glossary, http://www.unicode.org/glossary/#F.  See also RFC 6365 
 
47 Unicode Glossary, http://www.unicode.org/glossary/#G 
 
48 RFC 6365 
 
49 Unicode Glossary, http://www.unicode.org/glossary/#G 
 

http://www.unicode.org/glossary/#F
http://www.unicode.org/glossary/#G
http://www.unicode.org/glossary/#G
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Domain  
Label (IDL): 

of the more general term “IDN” or its equivalents.50 This term is used in 
RFC 3743 to talk about individual labels that make up IDNs.  It identifies 
the label that is under consideration under the Language Table.  For the 
purposes of the present discussion, it is better to use the term U-label. 

 
IDL Package:  A collection of IDLs as determined by [the guidelines in RFC 3743]. All 

labels in the package are "reserved", meaning they cannot be registered 
by anyone other than the holder of the Package. These reserved IDLs 
may be "activated", meaning they are actually entered into a zone file 
as a "Zone Variant". The IDL Package also contains identification of the 
language(s) associated with the registration process. The IDL and its 
variant labels form a single, atomic unit.51  This term should be 
restricted to use conformant to RFC 3743.  For a term appropriate to 
this report, use “IDL set” instead. 
 

IDL set:   A label whose code points are all included in the zone repertoire, along  
  with all  of the labels arising from the application of the code point  
  variant rules on that first label.  
 

Internationalized 
Domain Name (IDN): 

Domain names containing characters not included in the traditional DNS 
preferred form (“LDH”).   IDNs under discussion are implemented using 
IDNA; see RFCs 5890, 5891, 5892, 5893, and (for discussion) 5894 and 
5895. 

 
Label Generation 
Rules: 

A set of rules that govern what labels are allowed in a zone.  This is not a 
complete definition: the discussion of this term, and its related terms, is 
found in section 4 of the report. 

 
Language Variant  
Table: 

The key mechanisms of [RFC 3743] utilize a three-column table, called a 
Language Variant Table, for each language permitted to be registered in 
the zone. Those columns are known, respectively, as “Valid Code Point,” 
“Preferred Variant,” and “Character Variant,” and are defined separately 
…. 52  Language Variant Tables are one type of label generation rules.  
The original RFC 3743 definition has been expanded upon considerably in 
various deployed systems, and not every deployed table has exactly 
three columns.  In order to reduce confusion, this document will use 

                                                           
50 RFC 3743 
 
51 RFC 3743 section 2.1.18 
 
52 RFC 3743 
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Language Variant Table only to refer to such tables as conform to the 
specification in RFC 3743.  

 
Mirrored:   A status of an active label with respect to a zone, indicating the   
   isomorphism of the namespace beginning with that label, and at least  
   one other namespace beginning with another active label in the zone.   
 
Preferred Variant:  In a Language Variant Table, a list of Code Points corresponding to each 

Valid Code Point and providing possible substitutions for it.  These 
substitutions are "preferred" in the sense that the variant labels 
generated using them are normally registered in the zone file, or 
"activated."  The Preferred Code Points appear in column 2 of the 
Language Variant Table.  "Preferred Code Point" is used interchangeably 
with this term.53  This term should be used only when discussing 
implementations conforming to RFC 3743. 
 

Protocol-Permitted 
Code Point: 

A code point that is not DISALLOWED under IDNA2008. 

 
Representation  
Identifier: 

 
A tag or other mechanism used to group together a representation repertoire 
and its representation label rules.  See the discussion in section 4 of the report. 

Representation  
Label Rules: 

The subset of code point variant rules proper to a representation repertoire.  See 
the discussion in section 4 of the report. 

 
Representation 
Repertoire: 

A set of code points arbitrarily selected for use in the representation of some 
language or group of languages.  See section 4 of the report for a discussion of 
how the set is established. 

Representation  
Variant Rules: 

A subset of code point variant rules that apply to the code points of the 
representation repertoire. 

 
Script Table:   A Script Table is a table of Unicode Code Points all having the same  

  script property value.54 
 

U-label:  An IDNA-valid string of Unicode Code Points, in Normalization Form C 
(NFC) and including at least one non-ASCII character, expressed in a 

                                                           
53 RFC 3743 section 2.1.13 
 
54 Unicode Standard Annex #24 



91 

 

standard Unicode Encoding Form (such as UTF-8).55  The full definition 
for U-label is in RFC 5890, together with the definition of A-label and 
some ancillary definitions.  The reader is urged strongly to see that 
document, because without an understanding of it the present report 
will not make much sense.  A candidate string, to be a U-label, is subject 
to the constraints about permitted characters that are specified in 
section 4.2 of RFC 5891 and the rules in sections 2 and 3 of RFC 5892, 
and the Bidi constraints in RFC 5893 if it contains any character from 
scripts that are written right to left.  Apart from all other requirements, 
a string can only be a U-label if it can be decoded into an A-label using 
the Punycode algorithm, which A-label can be decoded back into the 
same original string using the same algorithm. 
 

Valid Code Point:  In a Language Variant Table, the list of code points that is permitted to 
be registered for that language. Any other code points, or any string 
containing them, will be rejected.  The Valid Code Point list appears as 
the first column of the Language Variant Table.56 The term Valid Code 
Point is deprecated in this report, because it can be confusing 
depending on the context.  Use “Label Valid Code Point” instead. 
 

Variant:  A term widely and somewhat carelessly used denoting some sort of 
relationship between two U-labels or candidate U-labels, or two DNS 
names or candidate names.  A full discussion of what the term means 
and some more specific types of behavior desired is discussed at length 
in sections 3 and 4.  The term without qualification is also almost 
without meaning, and the reader is urged to consult that section in 
order to ensure greater precision in use. 
 

Variant Label:  An informal term for labels that arise as the result of application of the 
alternative code point rules, as outlined in section 4.  See that section 
for discussion.  Note that labels that do not arise from the application of 
the code point variant rules are not variant labels for the purposes of 
this discussion, even if someone asks that they be treated as variant 
labels.  
  

                                                           
55 RFC 5890 
 
56 RFC 3743, section 2.1.12 
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Withheld: An action taken on a given label with respect to a zone, whereby the 
label is set aside for possible allocation to some entity.   
 

Zone:  A57 division of the data in the DNS, defined by the boundaries of all the 
cuts in the database relative to its domain.  Note that the foregoing text 
is not taken verbatim from RFC 1034.  In particular, RFC 1034 describes 
the zones only after all the cuts are made in the database; but for the 
practical purposes of identifying the zones for a given domain name, it is 
enough to know where all the parent-side and child-side zone cuts are 
for that name.  The cuts are identified by SOA (Start of Authority) 
Resource Records. For a complete understanding of zones, zone cuts, 
classes, and domains, the reader is directed to RFC 1034. 
 

Zone-permitted label:  A label which is valid under the label generation rules for the zone.  
Discussion: For practical purposes, the test of validity under the policy 
will likely be performed on the U-label form. 
 

Zone repertoire:  see Code Point Repertoire for the Zone. 

                                                           
57 RFC 1034, section 4.2 
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Appendix 3:  Overview of the Script Case Studies 
The six case study reports identify relevant variant issues in six different scripts:  Arabic, Chinese, 
Cyrillic, Devanagari, Greek and Latin. 

Broadly the reports share a common structure, beginning with an introduction of the report’s 
authors, and presentation of the history, distribution, and structure of the relevant script. The 
reports propose specific terminology to give details on the kinds of issues affecting their script 
which may suggest treatment by establishment of a variant management mechanism. Most of 
the reports include an exhaustive listing of the Unicode code points (with character names and 
representative glyphs) which make up their script (though not Chinese with over 5000 
characters to organize) and which they recommend for use in TLD labels. There is then a review 
of the kinds of relations between characters (and, in a very few cases, words) which might be 
modeled with the mechanism of variants. The language-related and contrastive complexities of 
individual characters are later supplemented with issues concerning the ease of character 
recognition, and other user issues deriving from constraints on the software and hardware 
environment in which the script is currently used. There are, in some cases, examinations of 
technical issues not centrally focused on variants (e.g., the degree of acceptability of invisible 
code points, apostrophes and other characters which are not members of the code block 
associated with the script). 

The focus then moves to the procedures for applying to register TLDs in the script, and the 
administrative apparatus which remains installed to support them. This last includes operational 
security concerns and procedures for dispute resolution.  

Most of the reports (4 out of 6) also have a summary of conclusions, to emphasize certain of 
their theses. 

 Statements of General Principles 
The focus of the work is the identification of issues concerning the potential use of 
variant characters within IDN scripts, to define variant top-level domains (TLDs), 
whether generic or country-code.  The IDNA Protocol determines whether a code point 
is Protocol-Valid (PVALID) by derivation from certain Unicode properties. It was noted 
with caution that the teams of experts might not have expertise on every language using 
the scripts considered. (Arabic 3, Devanagari 1, Cyrillic 1, Latin 11). 
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 Distinctive Terminologies 
To define the field of character variants, the teams initiated their work around a basic 
set of definitions for terms as provided by ICANN.58  These were supplemented by terms 
from the Unicode website, RFC 6365, and RFCs 5890, 5892 and 5893. (Arabic 4, Latin 2) 

The reports also defined additional terms to address properties of their own scripts. All 
except the Devanagari and Latin teams found it necessary to define such terms. (Arabic 
Appendix E, Chinese 3, Cyrillic 2, Greek 2).  The coordination team has worked to arrive 
at a set of generally agreed terminology for the IDN Variant Project. 

 Code Blocks in Extenso; Label Generation Policy 
The IDNA Protocol has a very broad-based filter to determine what code points are 
permitted under the protocol; the rules are defined in RFC 5892.59  Many teams 
considered or proposed further restrictions (e.g. to exclude free-standing diacritics), and 
listed the resulting subsets of code points which would be available for use in TLDs. 
(Arabic 5; Chinese 2.1; Greek Appendix A; Latin Appendix B2). 

The Arabic report (7) notes that in addition to these lists of label-valid code points, a 
policy on defining character variants, and a set of other rules and meta-information 
must also be added, in order fully to identify the set of possible labels. Taken together, 
these constitute a Label Generation Policy. The Chinese report (7) covers similar ground 
on the full integration of character repertoire and variant linkages, but basing its 
discussion on the concept of a Language Variant Table, in keeping with RFC 
3743.60Defining the Scope of Variants within a Script 

This was the central concern of each case study team. Inevitably, at the outset of the 
project, it could not be precisely foreseen what may turn out to be the ultimately 
acceptable boundary conditions.  

So the Arabic report (6) and the Devanagari report (3.2) distinguish cases of identical 
and similar glyphs (which might ultimately be seen as cases not of Variance but Visual 
Similarity). The Arabic report also notes the existence of interchangeable characters 
(where the basis for equivalence is linguistic functions) and optional cases (where the 
writing system allows some degree of choice in the exactness of a written form).  The 

                                                           
58https://community.icann.org/download/attachments/16842778/Draft+Definitions.pdf?version=1&modi
ficationDate=1310669168000 
 
59 http://tools.rfc-editor.org/html/rfc5892 
 
60 http://www.rfc-editor.org/rfc/rfc3743.txt 
 
 

https://community.icann.org/download/attachments/16842778/Draft+Definitions.pdf?version=1&modificationDate=1310669168000
https://community.icann.org/download/attachments/16842778/Draft+Definitions.pdf?version=1&modificationDate=1310669168000
http://tools.rfc-editor.org/html/rfc5892
http://www.rfc-editor.org/rfc/rfc3743.txt
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Devanagari report does not consider these latter as potential variants (4.2). The Cyrillic 
report (3) looks at a number of concrete issues in various Cyrillic-using languages, where 
additions and refinements to Cyrillic have created inconsistent usage. Specific examples 
of these types are listed in Appendices Arabic A and Cyrillic A. 

The Greek report (6-9) also focuses on inconsistent orthographical practices (e.g. in use 
of upper/lower case and the tonos accent), but also (5) notes the need for a policy on 
the orthography of the letter sigma, which (by historic convention) requires positional 
alternation between different code points. It also (13.1) favors recognition of some 
dialectal word equivalences as variants, specifically between words in the archaizing 
katharevousa standard and the modern dimotiki standard language. The Latin report (6) 
– although it ultimately requests no variants – considers upper/lower case, display 
forms, glyph identity, decorative forms, issues with diacritics, and punctuation marks. 

The Chinese report (5) has a different set of preoccupations since its script is 
ideographic rather than alphabetic, especially so since the report largely excludes 
Japanese and Korean with their additional phonetic systems hiragana, katakana and 
hangul. It excludes half-width characters (as not used for Chinese) and also homographs: 
here a single character has the same code, glyph and pronunciation, but appears to 
have multiple meanings. It recognizes variant characters, however, in two issues: the 
nexus between Simplified and Traditional characters (as a species of “regional 
variation”); and the Generic variants, where (owing to Unicode’s historic policies in 
defining Unified Han script) subtly different forms of glyphs (derived from differing 
authoritative sources) have been assigned different code points, although they are 
functionally non-distinct in Chinese. 

Further comparison of the instances and generalizations made by the various groups 
can be found in section 3 of this report. 

 The Role of Visual Similarity as a threat to Glyph Recognition 
Many reports refer to the role of visual similarity, which concerns the relationship 
between the form of a character as presented for recognition by users, and the specific 
character identities assigned by the Unicode code points. (Arabic 6; Chinese 5; Cyrillic 4, 
9.1; Devanagari 3.2; Greek 7; Latin 6.2). 

The issue includes potential confusions between glyphs in different scripts: especially 
among Latin, Greek and Cyrillic, but also between Devanagari and other closely related 
Indian scripts. In fact, it has to do with problems of recognition by users rather than 
(directly) with clashes of rights inherent in registration. Potential for cross-script 
confusion is addressed in Cyrillic 4, 9.1; Devanagari 3.4, 4.1; Greek 7; Latin 6.8, 7. 
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 Non-Variant Script Issues 
A number of technical issues have arisen in considering the need for variants which are 
not, strictly speaking, directed at variants. These include:  

•      available fonts and their impact on glyph shape and recognition (Arabic 
Appendix C);  

•       the admissibility of zero-width characters ZWJ and ZWNJ, for the control of 
glyph rendering (Arabic 5.21 and Appendix D, Devanagari 4.3); 

•       the admissibility of characters outside the code-block assigned to a given script, 
notably the (extremely similar) apostrophe, saltillo or turned comma (Cyrillic 
3.6, 9.2, Appendix A; Devanagari 3.4, Latin 6.7). 

 Other User Experience Issues 
Some of the reports dwell on specifics of the user situations for Internet use and 
connections in their specific script areas.  

Arabic 13 considers the inadequacies of computer systems (especially their keyboards 
and operating systems) to input and process the full range of Arabic characters in 
different regions (cf. Devanagari 5.3); the confusion of font differences resulting from 
the historic variety of writing styles (and cf. Cyrillic 3.2, 3.3, 9.1); the intrinsic problems 
of reversing text direction in using a right-to-left script with many left-to-right elements; 
and the current lack of penetration of IDNs into a variety of computer applications used 
by Arabic-script users. 

Chinese 6.1, 6.2 emphasizes the steep learning curve for users of information 
technology in China, resulting from historically low levels of technical education, and a 
dramatic increase in take-up over recent years. The result is inferred to be a wide-scale 
requirement of Chinese users to have computer systems for use in which they can make 
the same assumptions as in the rest of their literate practice (and cf. the 
characterization of the Indian situation in Devanagari 5.5, and of the Greeks in Greek 7).  

Latin 4 highlights the implications of this for policy on upper/lower case sensitivity and 
web-browser behavior.  Latin 5 points out that the constraints on usability of available 
characters which apply to an IDN environment have no precedent in people’s prior 
experience with ASCII-coded information technology. 

 Evaluation of Applications, Registration and Operations 
Towards the end of all the reports, consideration is given to administrative concerns: 
how are applications for registration to be evaluated and charged, how are registry 
records to be kept, how is security to be managed and any disputes to be resolved? 
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Arabic 8-11, Chinese 8-9, Devanagari 4.4-5, 5 and Latin 9 consider this conglomerate of 
issues for their respective script areas, but in virtue of their administrative nature, the 
points at issue are much the same. 

The reports all emphasize the multiplication of entities which comes about as variant-
generating rules are authorized. As well as there being more potential labels in 
existence, the root is working with scripts that are each typically used by many 
languages, whilst many of the languages in turn are used in multiple national 
administrations. Hence there will be requirements for mutual updating on a massive 
scale, and contact even before labels are reserved (Latin §8). 

In this new, much larger universe of discourse, it will be more challenging to keep track 
of what is available for users to apply for and registries to reserve, allocate, delegate or 
block, with legal as well as technical questions to be answered. Maintenance of labels 
once they are activated will be more demanding. An appropriate fee structure, as well 
as security procedures, will need to be defined. 

As to procedures for dispute resolution, this seems to be a point of decided interest, 
since it is addressed at length in Arabic 12, Chinese 8.2 and Latin 10. 

 Conclusions 
Each of the reports took the opportunity to stress particular theses identified for the 
relevant scripts. 

Chinese 10 dwells on the need for Chinese IDLs and their variants to be delegated to the 
same entity both in Simplified and Traditional character versions. 

Cyrillic 10 stresses the need for a conservative (perhaps even precautionary) approach 
to the admission of variants. Furthermore, it urges that selective blocking (rather than 
joint delegation, or some form of aliasing) is the best mode to take account of any 
variants which are admitted.  

Greek 14 gives some explanation of the thinking behind the report’s recommendations, 
but finishes with two “red lines”: the requirement that tonos accentuation and 
distinctive final sigma be recognized in IDL, and the requirement that a string and all its 
variants be reserved for the same registrant. 

Latin 11 notes that the reception of labels in Latin script is language-dependent, but the 
script itself is language-independent; it is therefore impractical to signalize any 
particular relation between two code points in the Latin repertoire as variants of one 
another. There must furthermore be specific linguistic justification for any Latin 
character whose inclusion is sought in a label for registration. 
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Appendix 4:  Salient Characteristics of 6 scripts   

Arabic 
The Arabic script is a distinctively cursive form of the Phoenician script, transmitted to the Arabs 
through Aramaic-using intermediaries, and subsequently spread massively, first round the Arab 
empire, and latterly to many other parts of the world where Islam was accepted, over the 
millennium from the 7th to the 17th centuries AD. 

The style of cursive script also varies from region to region, altering the shape, orientation and 
relative size of some letters. But these differences are not represented in Unicode. There is, 
however, a character (tatwīl ـ U+0640) which simply represents a stylistic lengthening of the 
horizontal distance between letters. 

Like many scripts for Semitic languages (notably, Phoenician, Aramaic and Hebrew) it is an 
abjad, a script where short vowels are usually omitted from representation, as well as doubling 
of consonants. (There is a system of diacritic signs to represent them, applied optionally. More 
diacritic sign are available to note consonant doubling, consonant clusters, and some 
morphological processes.) Arabic, like these other Semitic languages, is written right-to-left.  

There is no distinction of upper from lower case. However, every character has up to four 
shapes whose use is dependent on the character’s position in a word (initial, medial, final or 
isolated). (Recommended use of Unicode is to employ a single code point to represent each 
character, and leave the selection of glyphs to the rendering engine; however, Unicode does 
retain deprecated code points (U+FB50-FBFF) which represent many such shapes directly with 
representative glyphs.) This positional dependence of glyph selection is also seen in other 
Semitic scripts (e.g. Hebrew square characters, Syriac estrangelo): but in these, Unicode 
recognizes the different shapes as distinct code points. 

One characteristic of Arabic script is that many of the letter-forms representing one character 
are identical, or extremely similar, to forms representing another. They are therefore 
distinguished by a system of dots (one, two or three) and, in extensions used for languages 
beyond Arabic, a few other diacritic marks. Unlike the vowel diacritics, use of these dots etc. is 
not optional. There is regional and linguistic variation in the use of these obligatory diacritics, 
and these have provided the Arabic script’s principal means of extending its repertoire to cover 
sounds foreign to Arabic. All these obligatory dotted or diacritic-bearing forms are available as 
pre-composed Unicode code points, and they are not composable alternatively through 
rendering engines. 

There are officially 28 characters in the Arabic abjad, though this does not include pre-composed 
forms of vowel-carriers with hamza (the glottal stop) nor the vowel diacritics: with these, the 
total increases to well over 40; other language’s character-sets will often exceed this number. 
Unicode sometimes assigns different code points to characters which – regionally – have 
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somewhat different combinatory forms. In some instances (e.g. the so-called swash kaf ڪ 
U+06AA) what is a stylistic variant in Arabic (though assigned a separate code point) is used as a 
distinct character in other languages (e.g., Sindhi).  

There is one conjunct letter [لا] representing lām [ل] + alif [ا]. It is not available pre-composed in 
Unicode’s Arabic code block, but deprecated forms of it, alone and with various diacritics, 
survive at U+FE5 to U+FEFC. Rendering of groups of Arabic letters may result in extremely 
compact letter-forms, e.g. stacked vertically. 

Chinese 
The Chinese script is a system of several thousand characters, each representing a determinate 
phonological syllable, and – since such is the nature of Chinese – equally representing the 
meaning of that syllable. It is possible for a Chinese syllable to have different meanings: in such 
cases, each character will represent its meaning unambiguously, and will not be accepted as a 
variant for other characters with the same sound. Dialectally, also, the phonetic value of a 
character may change, but not its meaning: e.g. when the characters are used to represent a 
Chinese dialect not mutually intelligible with the standard Mandarin. 

Although the Japanese language uses fewer characters (by a factor of 3 to 4), its use of the 
system is in some ways more complicated than that made by Chinese: although each character 
still has a single distinctive meaning (shared with the Chinese), it typically has two readings, a 
short (monosyllabic or di-syllabic) one, which is historically derived from the Chinese 
pronunciation of the character, and used in loan vocabulary, and a polysyllabic one which 
represents a Japanese word-stem, totally unrelated phonetically, but which happens to have the 
same meaning. The actual text of Japanese is also more complicated in that it also contains 
phonetic symbols (from the kana syllabaries), which serve to fill out the specific morphology of 
Japanese language, as well as specifying the pronunciation of any words not represented by 
characters. 

The Koreans and Vietnamese have historically made heavy use of Chinese characters, each 
finding distinctive means to adapt them for the representation of their own languages, but now 
no longer do so. 

Chinese and Japanese were traditionally written in vertical columns, the columns being read in 
sequence from right to left across the page. Nowadays both languages are almost exclusively 
written horizontally left to right in Internet uses, like most European and Indian languages. The 
orientation of characters on the page is not affected by these gross differences of character lay-
out. However, both languages write text without any breaks between words. They have many 

distinctive punctuation marks: notably, [ 、] U+3001 which corresponds to comma [,] and [ 。] 

U+3002 which corresponds to period [.]. But all western punctuation marks may also be found 
used in text.  
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This script does not allow positional variants of characters’ written forms (whether due to code 
point difference or rendering), nor does it use diacritic symbols. 

Cyrillic 
The Cyrillic alphabet, named for St Cyril, is historically derived by Orthodox missionaries from 
Greek ca. 10th century AD, with some additional letter-forms drawn from Hebrew, and the 
Glagolitic alphabet, which had previously been used for Slavonic. Its use spread from the Balkans 
with the Church Slavonic language to the Ukraine and Russia in the 12th century. For modern 
use, it was reformed on 1708-10 under Peter I, and again in 1917-18 during the Russian 
Revolution.  This last led to its current use in the spelling of Russian and other modern Slavonic 
languages of Europe; by 1939 its repertoire of letters had been extended to represent many 
unrelated languages spoken within the Union and Mongolia. Some Turkic languages, spoken in 
independent states formerly within the Soviet Union, have switched their orthography to Latin 
in the early 21st century.  Romanian, a neo-Latin language, was written in Cyrillic until the mid 
19th century, and the closely related Moldavian until 1991. 

Cyrillic has more letters than Latin, for most languages over 30: Russian uses 33, Ukrainian 34. 
Some use many more (notably Abkhaz with 62).  Digraphs and trigraphs are not used, and 
although there is some use of diacritics (й, ё) (not usually decomposed in Unicode 
representation) they are less frequent in Cyrillic-using languages than in those that use Latin. 
More often, the form of a glyph is supplemented somewhat to represent distinct phones. Such 
extensions of the Cyrillic repertoire are coded by Unicode in a single block with the rest of 
Unicode. There are in general no conjunct consonants. 

In every other important respect (e.g. left-to-right direction, upper and lower case, lack of 
positional variants, word separation) Cyrillic is like Latin.   

Devanagari 
Dēva-nāgarī (Sanskrit for “divine urbane”) is the most widely used exponent of the Brahmi 
family of scripts, first known to moderns from the emperor Ashoka’s inscriptions (dispersed 
about India) of the 3rd century BC. Nowadays, Devanagari itself is largely a script for northern 
India and Nepal, though also used in Goa and Maharashtra in western India. 

It is formally classed as an abugida (a term borrowed from the Amharic language of Ethiopia, 
whose script is also of this class). Such a script is written with symbols each one of which 
(barring exceptions) represents a syllable, but which can be modified by diacritics and 
accompanying glyphs to represent a syllable with a different vowel. Such a syllabic unit is called 
in Sanskrit akshara (‘imperishable’). The Brahmi scripts go beyond the abugida norm, in that the 
akshara can be extended with prefixed consonants, and also a coda nasal ṃ (anusvāra) or 
aspirate ḥ (visarga).  
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Devanagari has symbols for 14 vowels [a, ā, i, ī, u, ū, ṛ, ḷ, e, ai, o, au, ǎ and ǒ], 25 occlusive stop 
consonants [k, kh, g, gh, ŋ; c, ch, j, jh, ñ; ṭ, ṭh, ḍ, ḍh, ṇ; t, th, d, dh, n; p, ph, b, bh, m], four glides 
[y,r,l,v], three sibilants [s, ś, sh] , and a glottal fricative [h]. Each of these, without further mark, 
is pronounced with a short [a], [ʌ] or [ə] vowel immediately following the consonant. There is 
also a nasalization mark ṃ and a syllable-final aspirate ḥ. Among the occlusive stops, each point 
of articulation is represented with a voiceless plain stop, a voiceless aspirate, a voiced plain stop, 
and voiced aspirate and a nasal. E.g., velar articulation is represented by ka, kha, ga, gha and ŋa. 
Although it did not originally contain symbols for non-dental fricatives, the unvoiced aspirates 
(kha, pha) can be marked with nukta (a subscript dot) to represent (fa, xa). Voiced za is indicated 
by adding a nukta to ja and uvular qa by adding a nukta to k. Nukta also converts the retroflex 
dentals ḍ and ḍh into flaps ṛ and ṛh.  In general the nukta has been used to create new symbols 
to represent consonant sounds unforeseen in the basic scheme of Devanagari. 

From the viewpoint of how they are written, the vowels may be considered to have positional 
variants: when they occur syllable-initially they are represented as independent aksharas; and 
when they occur after a consonant, they appear as diacritic signs (each called a mātrā) attached 
to that consonant’s akshara. However, from Unicode’s viewpoint, the syllable-initial vowels are 
not functionally related to those occurring within the syllable. Syllable-initial vowels are 
assigned code points distinct from their corresponding mātrās. Rendering rules should ensure 
the proper attachment of the vowel mātrās to their leading consonants. 

The general form of an akshara is a sequence of 0-5 consonants, followed by a vowel, which is 
oral or nasal. If there is no consonant, the relevant vowel akshara is used; if there is only one 
consonant, the consonant akshara.  If there is more than 1 consonant, the final consonant’s 
akshara is used as the basic form, and to it are added various truncated forms of the aksharas 
representing the preceding consonants: e.g. for the akshara [rtsnyā], truncated forms of ra, ta, 
sa, and na are added left-to-right to the yā akshara, which is itself ya with added vowel diacritic 
for ā. If the vowel is nasal, the nasalization mark is added to the whole.  

This process of conjoining consonants (by combining the truncated forms) was an immense 
problem for typographers, which carries over into Unicode rendering. Rendering engines usually 
start from a sequence of code-points with the virāma sign (aka halant) [U+094D] interspersed: if 
there is a precomposed conjoined glyph available it is generated, otherwise the different 

consonant aksharas appear in full, those lacking vowel marked with the diacritic [  ◌्]. This latter 

output, with explicit [  ◌्], can also be compelled by appending ZWNJ [U+200C] to a 

consonant+virama sequence of code-points. In some cases, the truncated form of the aksharas 
can be generated independently by appending ZWJ [U+200D] to a consonant+virama sequence 
of code-points. 

The diacritic [  ◌]् is also used to represent word-final consonants.  
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Devanagari is written from left to right. As used for modern languages, it leaves blank space 
between words, although the traditional usage was to write the strings of words in a sentence 
undivided, breaking only at sentence end. In this context, it is relevant that he complicated 
sandhi (liaison) rules that apply in some languages written with Devanagari (notably Sanskrit) 
often apply across word-boundaries and may merge words. Sentence breaks are marked with a 

danda (।) or double danda (॥), the latter usually only in verse. In modern languages, the query 

[?] is also used as a punctuation mark. 

Greek  
The Greek alphabet was derived from the Phoenician script of the eastern Mediterranean in the 
8th century BC. It diverged from it principally in systematically distinguishing vowels from 
consonants (Phoenician having symbolized consonants and in some cases long vowels – though 
re-using consonant symbols for this). Greek was the first alphabet to note all vowels explicitly. 
Early Greek had different standards, notably the Euboean, the Corinthian and the Attic, affecting 
the interpretation of some letters. Greek colonists spread the alphabet in different standards all 
around the Mediterranean, where they were adapted and extended to various languages 
(including Coptic Egyptian) and as far as Central Asia (for Bactrian), but after 403 BC only the 
Attic standard was used for the Greek language itself. Direction of writing (after much early 
fluctuation) stabilized to left-right. 

Greek in the Attic standard has 24 letters, each now with an upper- and lower-case form. It uses 
digraphs (μπ, ντ, γκ, γγ, γξ, γχ, αι, ει, οι, υι, αυ, ευ, ου) [(m)b, (n)d, (n)g, ŋg, ŋks, ŋx, e, i, i, i, af, ef, 
u] but no trigraphs. It has two clear conjunct consonants ξ for [ks] and ψ for [ps]; ζ too is 
sometimes said to be analyzable as [ds]. In the 3rd century BC, an auxiliary system of accents (´ ˆ 
`) (one per word) and breathings (rough or smooth ‘ ’) (obligatory on any word-initial vowel) – 
e.g. ἁρμονίη ἀφανὴς φανερῆς κρείσσων [harmoníē aphanès phanerês  kreíssōn] ‘A hidden 
harmony is stronger than an obvious one.’ - Heraclitus) was introduced, which – together with 
the system of upper- and lower-case - became obligatory. As an artefact of handwritten style, 
lower-case sigma at the end of a word came to be represented with a different form of the 
letter – e.g. επίσης [epísis]. 

As a result of pronunciation changes down the millennia, many Greek diphthongs have turned 
into digraphs (i.e. their pronunciation is no longer a combination of the component vowels) e.g. 
αι [e] - ει, οι, υι [i] - αυ [af] ευ [ef]. A diaeresis (dialytiká) mark also came in use to indicate that 
a high vowel (ι υ) after a vowel is in fact to have its usual pronunciation e.g. αϊ [ai] οϊ [oi] αϋ [ai].  

This system of accents and breathings was however radically simplified in 1982, moving to 
monotonikó orthography. In this, breathings are abolished, and the only accent is the tónos, 
written with a mark similar to the [´]. All accented variants of vowels bear this single symbol. 
Unicode has registered precomposed versions of all polytonikó and monotonikó vowel signs. 
Dialytiká vowels may also bear the tónos. 
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In every other important respect (e.g. left-to-right direction, upper and lower case, word 
separation) Greek is like Latin.   

Latin 
The Latin alphabet was historically derived from the Greek script (in its Euboean standard, with 
different letter-values from the established Attic standard). This occurred in northern Italy ca. 
fifth century BC, very likely via Etruscan. 

In its modern form, it has two sets of 26 letters in one-one correspondence, lower-case and 
upper-case. As an alphabetic script, it has letters for consonants and vowels. It is written from 
left to right; words are separated by blank spaces. Letters may occur as doublets (digraphs) and 
triplets (trigraphs), with specific phonetic values assigned by the language. There is one 
consonant widely used to express a conjunct, namely x (for [ks]). 

Letters may also occur with diacritic marks, usually indicating different phonetic values for the 
letter. In some instances, however, in some languages, diacritic marks are used to indicate the 
distinctive position of phonetic stress or accent within a word. 

Sentences are marked off by succeeding punctuation marks, notably periods. Other marks used 
at the end of sentences show the degree of discourse connection to the following sentence 
(colons and semi-colons); or the discourse force of the preceding sentence (queries and 
exclamations). There are also marks (commas) which serve to mark major breaks in the 
structure of sentences. Hyphens may be used to mark compound-words, and apostrophes to 
mark the position of omissions within abbreviated expressions. Periods are also used to mark 
abbreviations, when only the initial (or the initial and final) parts of expressions are retained. 
Directed left-right pairs of marks (parentheses, brackets, single quotes, double quotes) mark the 
boundaries of sections of text for various purposes.  

In printed form (as mostly used in printed and computing environments), the script is not 
cursive: furthermore, the forms of letters do not vary with their position in the word or their 
surrounding letters. By contrast, upper-case (aka capital) forms are used to replace the first 
letter of certain words, to signalize the whole word. Such words are said to be capitalized. 
Languages differ in their conventions for the use of capitals. Almost universally the first word of 
a sentence is capitalized. In English, capitalization marks the important status of proper names 
or titles, as well as for adjectives and nouns derived from such proper names. As examples of 
how other languages may differ from English, note that in German all substantives are 
capitalized, while in most European languages, such derived adjectives and nouns are not 
capitalized. 

Unicode provides several pages of “extended Latin” code points, many of them represented by 
images of regular glyphs deformed in some way. Besides the pre-composed  letters with 
diacritics, very few of these are current in the spelling of languages using Latin script. The 
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majority use for such characters is by linguists to represent particular phones more exactly (e.g. 
in the International Phonetic Alphabet or the Americanist tradition).  
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Appendix 5:  IDN Variant Handling in the New gTLD Program 
 

The new gTLD Applicant Guidebook notes as directed by the Board on its 25 September 2010 
meeting (http://www.icann.org/en/minutes/resolutions-25sep10-en.htm#2.5) that “no variants 
of gTLDs will be delegated through the New gTLD Program until appropriate variant 
management solutions are developed.” The same resolution further adds:  “The indicated 
variant strings are noted for future reference, and these variant strings will not be delegated to 
the applicant; the applicant has no rights or claim to those strings.” 

To preclude inadvertent allocation or delegation of IDN variant TLDs, and avoid outcomes in the 
gTLD evaluation process that set up later conflicts, ICANN will perform a set of checks to detect 
potential variant TLD strings during the evaluation of the first round of gTLD applications.  The 
following procedure will be used to identify and handle potential IDN variant TLD strings during 
the first round of the new gTLD process: 

1. ICANN will request a preferred format for the "top level tables" submitted by applicants, 
such as the model format described in Section 5 of RFC 4290, with the format used by 
RFC 3743 as an acceptable alternative. The applicant may use another format so long as 
a reference code for handling the tables is provided. Tables have to be machine-
readable (text format, UTF-8 encoded). Guidance will appear in the supplemental notes 
for the Guidebook. 
 

2. Once the application window closes, ICANN will combine all the "top level tables" 
submitted into one combined table (encompassing all scripts) – referred to as the 
“Baseline Table.” Any conflicting issues will be dealt with subject-matter expert 
involvement.  These might include rare cases where applicants publish incorrect tables 
that affect the identification, blocking, and possible activation of strings identified as 
variants.  (In reality, none are expected since the union of all proposed variant strings 
will be used.)   
 

3. ICANN will use the Baseline Table to generate variant strings for all the applied-for IDN 
TLD strings. Generated variant strings will be checked for contention in addition to the 
list of variant strings declared by the applicants.  
 

4. ICANN will check each variant string for exact matches (i.e., matching code point by 
code point) against the applied-for strings and variant strings included in other 
applications. Note that generated variant strings will not be added to an application. 
 

5. In case an exact match is found, the relevant applied-for strings will be put in a 
contention set and reviewed on a case-by-case basis (the potential for such instances is 

http://www.icann.org/en/minutes/resolutions-25sep10-en.htm#2.5
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small and can be handled manually). 
 

At a later time, once mechanisms are in place permitting variant TLDs to be active in the DNS, 
the variant strings could go through remaining evaluation reviews if required as a prerequisite to 
allocation, delegation, or other actions. 
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Appendix 6:  Survey of IDN Practices 
 

A survey was conducted in October 2011 of all top-level domain managers, in order to better 
understand the prevalence of variant usage within registrations conducted by existing domain 
registries. Respondents were asked to describe their existing IDN usage, and then for those that 
performed some kind of variant handling, to respond with details about how that work was 
conducted. 

Of the 298 country-code or generic top-level domains in existence, responses were received 
from 109.  

Approximately half of respondents from both categories responded that they had some form of 
support for IDN registration within their zone.  

Of those, the majority responded they check registrations for validity against a code point 
repertoire of what they consider valid code points. Most of those allowable code points 
represented the set required to represent the language(s) served by the particular zone. 
Alternatively, script based approaches were also used that constrained code points to the 
script(s) used to represent the local language(s). 

Respondents that allowed for IDN registrations were asked if they permitted mixing of code 
points from multiple different scripts in the same label. A small number of TLDs (12) responded 
that they did, although most of these responses were limited to mixing the script uses to 
represent the local language, with the Latin letters/digits/hyphens afforded by the conventional 
DNS. 

Of the respondents allowing registrations of IDNs, 15 indicated they had provisions for 
maintaining variants. Essentially all of those respondents either used the variant approach for 
CJK espoused by the JET Guidelines, or along the lines of the communal approach to the Arabic 
language described in RFC 5564. 

Finally, respondents that manage variants were asked if they coordinate such variants across 
two or more zones. Of the three that answered affirmatively, one managed the same contents 
between an ASCII and an IDN top-level domain; and the other two maintain a variant zone that 
is not listed in the DNS in anticipation that the variant label will be delegated in the root zone at 
a later date. 

The primary aim in conducting the survey was to ensure there wasn’t a methodology used for 
variants under deployment that the team was not aware of. The responses indicated that no 
such novel approaches were undertaken beyond those of which the team was already familiar. 
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