RSSAC002 version 4

RSSAC Advisory on Measurements of the Root Server System

An Advisory from the ICANN Root Server System Advisory Committee (RSSAC)
12 March 2020
Measurements of the Root Server System

Preface

This is an Advisory to the Internet Corporation for Assigned Names and Numbers (ICANN) Board of Directors and the Internet community more broadly from the ICANN Root Server System Advisory Committee (RSSAC). In this Advisory, the RSSAC identifies and recommends a set of parameters that would be useful for monitoring and establishing baseline trends of the root server system.

The RSSAC seeks to advise the ICANN community and Board on matters relating to the operation, administration, security and integrity of the Internet’s root server system. This includes communicating on matters relating to the operation of the root servers and their multiple instances with the technical and ICANN community, gathering and articulating requirements to offer to those engaged in technical revisions of the protocols and best common practices related to the operational of DNS servers, engaging in ongoing threat assessment and risk analysis of the root server system and recommend any necessary audit activity to assess the current status of root servers and root zone. The RSSAC has no authority to regulate, enforce, or adjudicate. Those functions belong to others, and the advice offered here should be evaluated on its merits.

A list of the contributors to this Advisory, references to RSSAC Caucus members’ statement of interest, and RSSAC members’ objections to the findings or recommendations in this Report are at the end of this document.
Table of Contents

1 Introduction 4

2 Scope of Measurements 4

3 RSI Measurement Parameters 5
 3.1 Latency in publishing available data 5
 3.2 The volume of traffic 6
 3.3 The query and response size distribution 7
 3.4 The RCODE distribution 8
 3.5 The number of sources seen 8

4 RZM Measurement Parameters 9
 4.1 The size of the overall root zone 9

5 Implementation Notes 9

6 Interchange Format and Storage 10
 6.1 The 'load-time' Metric 11
 6.2 The 'zone-size' Metric 11
 6.3 The 'traffic-volume' Metric 12
 6.4 The 'traffic-sizes' Metric 12
 6.5 The 'rcode-volume' Metric 14
 6.6 The 'unique-sources' Metric 14
 6.7 URL Path Standard 15

7 Identifier-specific Metrics 15

8 Recommendations 16

9 Acknowledgments, Disclosures of Interest, Dissents, and Withdrawals 16
 9.1 Acknowledgments 16
 9.2 Statements of Interest 17
 9.3 Dissents 17
 9.4 Withdrawals 17

10 Revision History 17
 10.1 Version 1 17
 10.2 Version 2 17
 10.3 Version 3 18
 10.4 Version 4 18
1 Introduction

In response to a desire voiced by the ICANN Board, the RSSAC made a commitment to prepare for an implementation of an early warning system that shall assist in detecting and mitigating any effects (or the absence of such effects) which might challenge the scaling and/or normal performance of the Internet's DNS root server system (RSS) caused by growth of the DNS root zone itself or changes in client behavior from a larger root zone file.

As a first step, the RSSAC has begun work to determine a list of metrics that define the desired service trends for the RSS. These metrics include the measured latency in the publication of the root zone, number of queries and responses, distribution of response types, distribution of message sizes, and the number of sources seen. With knowledge of these metrics in hand, the RSSAC can then seek to produce estimates of acceptable root zone size dynamics to ensure the overall system works within a set of parameters. The future work to define these parameters will involve RSSAC working closely with the root server operators (RSOs) to gather best practice estimates for the size and update frequency of the root zone.

It must be well understood that the measurements described in this document are a response to the current awareness, experience, and understanding of the RSS. As time progresses more, fewer, or entirely different metrics may be required to investigate new concerns or defined problem statements.

2 Scope of Measurements

The goal of this document is to support an understanding of the stability of the operation of the RSS. The measurement parameters included in this document are divided into two groups, root server identifier (RSI) parameters (Section 3), and root zone maintainer (RZM) parameters (Section 4).

These measurements will allow estimates of the dynamics of the root zone to ensure that the overall system works within a set of parameters. Dynamics here include growth of the root zone due to increasing the number of TLDs, how protocol changes such as DNSSEC, IPv6, and Internationalized Domain Names (IDN) affect the root zone, including zone size, number of records, and may also include the rate of change of records.

An additional goal is to provide measurements that assist evaluation of best practices for the operation of the root zone. Where possible this document adheres to the terminology defined in RSSAC026v2.¹

The RSSAC also recognizes that measurement of some values are out of scope. Specifically, the goal of this document is not to answer a wider set of research questions. Although some

Measurements of the Root Server System

of the current measurements may be used in research, the timescale to review and the deployment of new measurements through the RSSAC approval process seems to be a poor match for supporting research in general. Additionally, more suitable alternatives to support DNS research exist.

3 RSI Measurement Parameters

The RSSAC has identified a set of parameters that would be useful to monitor and establish a baseline trend of the RSS. Monitoring these parameters should be implementable without major changes within the operations of the RSS. The set of parameters is:

- Latency in publishing root zone data,
- The number of queries and responses,
- The response type and size distribution, and
- The number of sources seen.

The RSSAC recommends that these measurements be collected in a central location and stored in a common format for ongoing analysis. The collection location, and the frequency this data is uploaded to the central location are out of scope of this document.

Where a reporting period is mentioned in this document, the reader should interpret this as the collection time window of 00:00:00 UTC up to but not including 00:00:00 UTC the following day.

Only syntactically correct DNS messages should be counted. Data-less connections or non-DNS messages should not be counted.

3.1 Latency in publishing available data

Given the highly-distributed nature of the RSS, latency in publishing available data is of particular interest, especially as the root zone grows in size. Some RSOs maintain a large number of anycast sites (e.g. 50 or more). Additionally, some RSOs intentionally locate servers in geographic regions with relatively poor Internet connectivity. Such locations can present a challenge to zone publication. For these reasons, RSSAC recommends measuring latency in publishing root zone data.

Latency in publishing available data is defined as the time elapsed between receipt of a NOTIFY message from the Root Zone Maintainer until 95% of the RSI’s instances have loaded the new zone and are ready to serve it.\(^2\) The elapsed time is reported as number of

\(^2\) When operating large numbers of anycast DNS servers over a wide area, there will tend to be some servers that are located in areas that may have higher than normal publication latencies. The 95th percentile measurement is not to have these areas unduly skew the reported values.

RSSAC002v4
Approved by the RSSAC on 10 March 2020
Measurements of the Root Server System

seconds.

Although this metric is reported as number of seconds, consumers of the measurements should not assume that the data is accurate to the second. Due to potential differences in mechanisms used by different operators in calculating this metric, differences in the order of seconds to minutes should be ignored when used for analysis. Additionally, it is understood that, due to the nature of the RSS, any reported changes in the value of this metric on the order of seconds or minutes have no relevance with regard to the behavior and stability of the RSS.

3.2 The volume of traffic
Knowing the amount of traffic entering into and emerging from the RSS is fundamental to evaluating its stability. This metric informs us about potential differences in traffic received by different RSIs, about long-term gradual changes in overall traffic levels, as well as sudden changes due to attacks or other incidents. For these reasons, RSSAC recommends measuring the number of queries received and responses sent by RSOs.

Historically, DNS was carried exclusively over UDP and addressed using IPv4. While UDP and IPv4 still account for most RSS traffic, TCP and IPv6 are continuing to increase in prevalence. Therefore, RSSAC recommends measuring the root server traffic volume both by transport protocol and by IP version. Such measurements may assist RSOs with future hardware, network, and overall capacity planning.

The traffic volume counters are defined as follows:

\[\text{dns-udp-queries-received-ipv4} \]
Number of DNS queries received over IPv4/UDP transport at each RSI during the reporting period.

\[\text{dns-udp-queries-received-ipv6} \]
Number of DNS queries received over IPv6/UDP transport at each RSI during the reporting period.

\[\text{dns-tcp-queries-received-ipv4} \]
Number of DNS queries received over IPv4/TCP transport at each RSI during the reporting period.

\[\text{dns-tcp-queries-received-ipv6} \]
Number of DNS queries received over IPv6/TCP transport at each RSI during the reporting period.
Measurements of the Root Server System

dns-udp-responses-sent-ipv4
Number of DNS responses sent over IPv4/UDP transport at each RSI during the reporting period.

dns-udp-responses-sent-ipv6
Number of DNS responses sent over IPv6/UDP transport at each RSI during the reporting period.

dns-tcp-responses-sent-ipv4
Number of DNS responses sent over IPv4/TCP transport at each RSI during the reporting period.

dns-tcp-responses-sent-ipv6
Number of DNS responses sent over IPv6/TCP transport at each RSI during the reporting period.

Consumers of traffic volume data are hereby advised that under normal operations, response message counts may be less than query counts. Additionally, under certain types of attacks, response counts may be much lower than query counts due to various types of rate limiting and filtering. Differences in implementations of these metrics may also lead to differences in the value of “queries - responses” for different operators.

3.3 The query and response size distribution

To understand the interaction of DNS message sizes, protocol evaluation, and their interaction with underlying transport protocols (UDP with potential fragmentation and TCP), RSSAC recommends measuring distribution of query and response sizes.

A DNS query is defined as a sufficiently well-formed DNS transaction initiation pursuant to DNS protocol standards directed at an RSI over TCP or UDP to a port assigned by IANA for DNS service.

DNS query sizes are determined by the length of the entire DNS message. Thus, in practical terms, the transport headers (Ethernet, IP, and TCP or UDP etc) are removed leaving the DNS payload to measure. The DNS query message sizes should be recorded for both TCP and UDP.

A DNS message carried over TCP is prefixed with a 16-bit (two octet) value indicating the size of the message. Implementations should exclude these two octets in the calculation of message size.
Measurements of the Root Server System

The query size distribution is defined as a list of values for the number of queries received during the reporting period of a particular size range in the following:

0-15, 16-31, 32-47, 48-63, 64-79, ..., 256-271, 272-287, 288-

DNS response sizes are similarly determined by the size of the DNS message and the DNS response message sizes should be recorded for both TCP and UDP.

The response size distribution is defined as a list of values for the number of responses sent during the reporting period of a particular size range:

0-15, 16-31, 32-47, 48-63, 64-79, ..., 4064-4079, 4080-4095, 4096-

This measurement could be used to analyze trends in DNS message size that may take place due to new protocol deployments, such as DNSSEC or IDN as well as client side changes (e.g. longer QNAMEs due to prefix scheme, shorter QNAMEs due to QNAME minimization, new EDNS options etc.) and shifts in response types (referral, signed referral, authoritative positive response, NXDOMAIN).

3.4 The RCODE distribution
To understand trends in the nature of queries received by RSOs, RSSAC recommends measuring RCODEs, the response codes to DNS queries.

The RCODE distribution is a raw count of the RCODE values observed in responses generated by the RSO’s instances during the reporting period. Note in particular that this measurement should exclude any DNS response messages that may be sent to a RSI.

Note that RCODE is a 4-bit number as defined by RFC1035. However, the Extension Mechanisms for DNS (EDNS0) specification, RFC6891, extends RCODE to a 12-bit number. Data collection software must be aware of extended RCODE values in response messages and report them if present.

The list of RCODEs is available from IANA.3

3.5 The number of sources seen
To understand trends in the number of clients of the RSS, RSSAC recommends measuring the number of distinct query sources. With DNSSEC validation potentially moving to the end systems and applications, the number of resolvers and validators querying to the RSS might be growing; these figures will help distinguish various contributing factors to the

potentially increase in the number of DNS queries reaching the RSS.

The number of sources seen is the number of unique IP source addresses accumulated across all instances of an RSI during the reporting period. Source addresses must be taken only from query messages sent to the RSI.

There must be two values:

\textit{num-sources-ipv4}

The number of unique IPv4 addresses sending DNS queries to an RSI during the reporting period.

\textit{num-sources-ipv6-aggregate}

The number of unique IPv6 addresses sending DNS queries to an RSI during the reporting period, aggregated at the /64 level.

4 RZM Measurement Parameters

4.1 The size of the overall root zone

Tracking this measurement over a long period of time may be useful in detecting any trends in the growth of the zone and correlating this to other measurements such as the latency in publication distribution.

The size of the compiled root zone is measured in wire-format AXFR response encoded as if to be transmitted in the smallest number of messages with the names in the zone and the resource records in each Resource Record set (RRset) sorted into DNSSEC order, and using compression pointers wherever possible. Even though AXFR occurs over TCP, this measurement must exclude the two-octet size prefix for each message transmitted.

Earlier versions of this document stated that each operator should measure the size of the root zone. RSSAC recommends that only the Root Zone Maintainer (RZM) report this metric, for the following reasons:

1. The metric’s definition was given to avoid the situation that different operators report significantly different sizes for the root zone. While sufficiently specific, this definition was difficult to measure in practice.
2. All operators that implemented this measurement did so with custom software external to the actual distribution of the zone within their operations.
3. All operators reported essentially identical values.

5 Implementation Notes

In review of these metrics, RSSAC members have identified a number of concerns that
Measurements of the Root Server System

might affect the collection of data, the consistency of the data collected, and some areas that may require further investigation.

Of note are:

● The single act of transferring the collected statistical data from widely deployed root server instances may affect the available bandwidth used to serve DNS queries.

● Collecting measurement data could pose as an operational impact on the root server instances. Should any impact of service eventuate, measurement data will be discarded for the higher priority of service delivery.

● There are current DNS software logging limitations that inhibit the perfect collection and resolution of ‘latency in publishing available data’ values due to the lack of zone serial numbers in AXFR/IXFR logging statements.

● Latency in publishing available data could potentially be more granular and also provide the time it takes for a root server instance to commence serving from that zone upon receiving it; however, in practical terms that reporting feature is not currently available in DNS software.

● Implementations of these metrics that use packet capture techniques may need to implement TCP reassembly to properly capture DNS messages delivered over TCP. Since TCP reassembly is non-trivial, it is left to individual RSOs whether or not to include metrics from DNS-over-TCP.

In general, the availability of tools to collect these measurement data is limited. Commitment by RSOs to collect these measurement data may be proportional with tool availability.

6 Interchange Format and Storage

Metrics should be stored in per-day, per-metric YAML formatted files.

● Each file is a YAML "document" representing a dictionary at the top level.
● The version of YAML to be used is 1.2.4
● All dates are formatted using ISO 8601 including both the date and time of day (which shall always be midnight UTC), e.g., '2013-08-26T00:00:00Z'.
● The top-level dictionary contains a set of mandatory common key/value pairs:
 ○ 'version': this describes the version of RSSAC002 statistics.
 ○ 'service': this describes the service that the metric belongs to. This should be of the form "<letter>.root-servers.net".

4 See YAML version 2, https://yaml.org/spec/1.2/spec.html
Measurements of the Root Server System

- 'start-period': This describes the starting date and time for the reporting period for the metric.
- 'metric': This is the name of the metric. The valid metric names are 'load-time', 'zone-size', 'rcode-volume', 'traffic-sizes', 'traffic-volume', and 'unique-sources'.

- The top level dictionary also contains metric-specific key/value pairs described below.
- Key value pairs in a YAML document are unordered, meaning that they may appear in different orders at different times or from different publishers.
- Some keys must be included even if their value is zero, while others must not be included if their value is zero. Values of zero must be represented by the number 0 (Unicode codepoint U+0030).
- The RSSAC recommends that implementations of this specification utilize third-party YAML libraries for reading and writing to reduce the chance of errors in processing.
- The RSSAC asks that implementers who discover errors in RSSAC002 YAML data files send email to ask-rssac@icann.org. Include a description of the error and any information necessary to reproduce it.

6.1 The 'load-time' Metric

For the 'load-time' metric, the additional key 'time' is added.

The value is a dictionary with the zone serial numbers as keys and the time delta described in section 3.1 "Latency in publishing available data", in seconds as an integer.

An example:

```yaml
---
version: rssac002v4
metric: load-time
start-period: 2016-01-01T00:00:00Z
time:
  2016010100: 811
  2016010101: 711
service: a.root-servers.net
```

If the load-time metric is unavailable, it should not be listed.

6.2 The 'zone-size' Metric

For the 'zone-size' metric, the additional key 'size' is added. The value is a dictionary with the zone serial numbers as keys and the size in octets as values. Although it should never happen in normal operation, zone sizes with zero size must be included.
Measurements of the Root Server System

An example:

version: rssac002v4
service: root-servers.net
start-period: 2013-08-26T00:00:00Z
metric: zone-size
size:
 2013082600: 238218
 2013082601: 238220

6.3 The 'traffic-volume' Metric
For the 'traffic-volume' metric, additional keys are added to the top-level dictionary representing each traffic category as described in section 3.3: 'dns-udp-queries-received-ipv4', 'dns-udp-queries-received-ipv6', 'dns-tcp-queries-received-ipv4', 'dns-tcp-queries-received-ipv6', 'dns-udp-responses-sent-ipv4', 'dns-udp-responses-sent-ipv6', 'dns-tcp-responses-sent-ipv4', and 'dns-tcp-responses-sent-ipv6'. The values are the total number of requests or responses seen during the reporting period for each category.

An example:

version: rssac002v4
service: a.root-servers.net
start-period: 2016-01-01T00:00:00Z
metric: traffic-volume
dns-udp-queries-received-ipv4: 4172948209
dns-udp-queries-received-ipv6: 198112796
dns-tcp-queries-received-ipv4: 52823651
dns-tcp-queries-received-ipv6: 1481265
dns-udp-responses-sent-ipv4: 4166894695
dns-udp-responses-sent-ipv6: 198080862
dns-tcp-responses-sent-ipv4: 45241791
dns-tcp-responses-sent-ipv6: 177961

6.4 The 'traffic-sizes' Metric
For the 'traffic-sizes' metric, four additional keys are added to the top-level dictionary as described in section 3.4: 'udp-request-sizes', 'udp-response-sizes', 'tcp-request-sizes', and 'tcp-response-sizes'. The values of each key are dictionaries with the histogram bucket ranges as keys and histogram bucket counts as values. Size ranges with a zero count must be omitted.
An example (with most of the histogram buckets elided):

version: rssac002v4
service: a.root-servers.net
start-period: 2016-01-01T00:00:00Z
metric: traffic-sizes
udp-request-sizes:
 16-31: 512835421
 32-47: 2576751251
 48-63: 1039338385
 ...
 256-271: 79527
 272-287: 26329
 288-: 40691
udp-response-sizes:
 16-31: 1271477
 32-47: 150135
 48-63: 4288688
 ...
 1440-1455: 68
 1456-1471: 6514
 1472-1487: 4638
tcp-request-sizes:
 16-31: 3041341
 32-47: 32140174
 48-63: 13308536
 ...
 256-271: 1808
 272-287: 1174
 288-: 4644733
tcp-response-sizes:
 16-31: 2144
 32-47: 1409
 48-63: 191
 ...
 2304-2319: 37
 2400-2415: 49
 4096-: 554
6.5 The 'rcode-volume' Metric

For the 'rcode-volume' metric, additional keys are added to the top-level dictionary representing numeric RCODEs as described in section 3.5. The values are the total number of responses seen during the reporting period with each RCODE. RCODEs with a zero count must be omitted.

An example:

```yaml
---
version: rssac002v4
service: a.root-servers.net
start-period: 2016-01-01T00:00:00Z
metric: rcode-volume
0: 1692304065
1: 600937
2: 1570
3: 2716752968
4: 192263
5: 1262982
6: 2149
7: 1192
8: 1249
9: 1127
10: 1158
11: 1248
12: 1032
13: 985
14: 1413
15: 1164
16: 8
```

6.6 The 'unique-sources' Metric

For the 'unique-sources' Metric, two keys, as described in section 3.6, are added to the top-level dictionary: 'num-sources-ipv4', and 'num-sources-ipv6-aggregate'. Num-sources with zero counts must be omitted. This metric is optional.

An example:

```yaml
---
version: rssac002v4
service: a.root-servers.net
start-period: 2016-01-01T00:00:00Z
```
Measurements of the Root Server System

- **metric**: unique-sources
- **num-sources-ipv4**: 3740666
- **num-sources-ipv6-aggregate**: 114142

6.7 URL Path Standard

The interchange files should be made available using a standardized URL path scheme to aid in finding and combining the set of files from the different operators.

The path scheme is:

```
<year>/<month>/<metric>/<short-service>-<yyymmdd>-<metric>.yaml
```

Where: 'year' is a 4-digit year, 'month' is a 2-digit month, 'short-service' is a shorter version of the service name, generally of the format of "<letter>-root". For the RZM Measurements, 'short-service' is "rmz".

Examples:

- 2013/09/load-time/a-root-20130901-load-time.yaml
- 2020/01/zone-size/rzm-20200101-zone-size.yaml

7 Identifier-specific Metrics

In some cases, RSOs may wish to publish statistics beyond what this document prescribes. In order to avoid collision and ambiguity in names, identifier-specific metrics should be prefixed with the identifier’s letter ([a-m]-root).

RSOs who wish to publish statistics from prior versions of this specification, but that are no longer required, may continue to do so using the historic metric name.

Examples:

```
version: rssac002v4
service: d.root-servers.net
start-period: 2016-01-01T00:00:00Z
metric: d-root-XYZ-metric
sample-xyz-metric-1: 23498
sample-xyz-metric-2: 25678
```
8 Recommendations

Recommendation 1: The RSSAC recommends each RSO implement the measurements outlined in this advisory.

Recommendation 2: The RSSAC should monitor the progress of the implementation of these measurements.

Recommendation 3: Measurements outlined in this document should be reviewed every two years to determine whether they require updating to accommodate changes in DNS technologies.

9 Acknowledgments, Disclosures of Interest, Dissents, and Withdrawals

In the interest of transparency, these sections provide the reader with information about four aspects of the RSSAC process. The Acknowledgments section lists the RSSAC caucus members, outside experts, and ICANN staff who contributed directly to this particular document. The Statement of Interest section points to the biographies of all RSSAC caucus members. The Dissents section provides a place for individual members to describe any disagreement that they may have with the content of this document or the process for preparing it. The Withdrawals section identifies individual members who have recused themselves from discussion of the topic with which this Advisory is concerned. Except for members listed in the Dissents and Withdrawals sections, this document has the consensus approval of the RSSAC.

9.1 Acknowledgments

RSSAC thanks the following members of the Caucus and external experts for their time, contributions, and review in producing this Report.

RSSAC Caucus members
Abdulkarim Oloyede
Alejandro Acosta
Bruce Crabill
Duane Wessels
Jaap Akkerhuis
John Bond
John Heidemann
Ken Renard
Ondřej Surý
Paul Hoffman
Paul Vixie
9.2 Statements of Interest
RSSAC caucus member biographical information and Statements of Interests are available at: https://community.icann.org/display/RSI/RSSAC+Caucus+Statements+of+Interest

9.3 Dissents
There were no dissents.

9.4 Withdrawals
There were no withdrawals.

10 Revision History
10.1 Version 1
First version, published on November 20, 2014, is available at:

10.2 Version 2
Second version, published on January 7, 2016, is available at:

RSSAC002 v2 includes the following changes from v1:

- Section 2.2 (The size of the overall root zone) was amended to clarify that TCP size prefix octets are not included in the metric.
- Section 2.4 (The query and response size distribution) was amended to clarify that TCP size prefix octets are not included in these metrics.
- Section 2.4 was amended to include 0-15 in size ranges to be tabulated.
- Superfluous quotes around YAML keys were removed from example YAML in

RSSAC002v4
Approved by the RSSAC on 10 March 2020
sections 4.1 (The ‘load-time’ Metric) and 4.2 (The ‘zone-size’ Metric).
- Indentation was fixed for example YAML in sections 4.3 (The ‘traffic-volume’ Metric) and 4.6 (The ‘unique-sources’ Metric).
- Section 4.5 (The ‘rcode-volume’ Metric) was amended to clarify that nonzero counts should be omitted.

10.3 Version 3
RSSAC002v3 included the following changes from v2.

- Section 2 (The scope of the Measurement) was added defining the scope of the measurements.
- Section 3.1 (Latency in publishing available data) was amended as the time elapsed between receipt of a NOTIFY message from the Root Zone Maintainer until 95% of the operator’s name servers have loaded the new zone and are ready to serve it. Although 'load-time' is reported as seconds, we note that it should not be assumed to have such accuracy.
- Section 3.2 (The size of the overall root zone) was amended to recommend only the root zone maintainer to collect and report this metric, and does not require root server operators to collect and report this metric.
- Section 3.3 (The volume of traffic) was amended to clarify the definitions of responses, as well some discussion on why queries and responses might differ.
- Section 3.4 (The query and response size distribution) was amended to clarify that it is only for responses sent FROM the root server (not TO the server).
- Section 4 (Implementation Notes) was amended stating that TCP reassembly is non-trivial and therefore including data from DNS-over-TCP is optional.
- Section 5 (Interchange Format and Storage) was amended by adding RSSAC002 version number in the YAML file, removing the end-period for the metric (all measurements cover a 24 hour period and the start time is sufficient), reiterating that key value pairs in a YAML document are unordered, and recommending third party YAML libraries be used for reading and writing to reduce the chance of errors in processing.
- Section 6 (Operator Specific Metrics) was added defining the syntax of operator specific metrics.

10.4 Version 4
RSSAC002v4 includes the following changes from v3:

- Updated terminology throughout document to align with RSSAC026v2.
- Section 3 (RSO Measurement Parameters) was renamed to scope the measurements specifically to the RSOs. The zone size measurement was moved to section 4.
- Section 3.5 (The Number of Sources Seen) was amended to remove the
Measurements of the Root Server System

“num-sources-ipv6” measurement in favor of just “num-sources-ipv6-aggregate”

● Section 3.5 (The Number of Sources Seen) was amended to remove text stating that the “num-sources-*” measurements are optional and will be reviewed after 3 years.
● Section 4 (RZM Measurement Parameters) was added as a new place for the zone size measurement, clarifying that it is to be measured by the RZM instead of at each RSO.
● Section 6 (Interchange Format and Storage) and Section 7 (Operator-Specific Metrics) examples were changed to reflect the RSSAC002 minor version number.
● Section 6 (Interchange Format and Storage) was amended to specify YAML version 1.2
● Section 6.6 was amended to mark the 'unique-sources' metric as optional.
● Section 6.7 (URL Path Standard) was amended to define how the RZM measurements will be labeled.
● Section 7 (Identifier-specific Metrics) was amended to specify how RSOs may continue publishing metrics from older versions of this specification.