A Look at RFC 8145 Trust Anchor Signaling for the 2017 KSK Rollover

Duane Wessels

October 11, 2017
Background
2017 Root Zone KSK Rollover

- October 11, 2017!

- Root zone DNSKEY RRset signatures generated from KSK-2017.

- Validating name servers require updated trust anchors before then.

- It would be really nice to know if validators update their trust anchors.
What Is A Trust Anchor?

RFC 4033:

“A configured DNSKEY RR or DS RR hash of a DNSKEY RR. A validating security-aware resolver uses this public key or hash as a starting point for building the authentication chain to a signed DNS response. In general, a validating resolver will have to obtain the initial values of its trust anchors via some secure or trusted means outside the DNS protocol. Presence of a trust anchor also implies that the resolver should expect the zone to which the trust anchor points to be signed.”
How Are Trust Anchors Updated?

• RFC 5011 “Automated Updates of DNS Security (DNSSEC) Trust Anchors.”

• Operating System updates.

• Manually by a system administrator.
How Can We Tell If Trust Anchors Are Updated?

- Can we query all validators, and ask for their trust anchor?
 - Not really.
 - Only Unbound supports a DNS query to observe its trust anchor:
 - `trustanchor.unbound CH TXT` as of v1.6.2
 - They should have ACLs to block external queries anyway.
- How about a “sentinel” record signed by only the new KSK?
 - If the old KSK signs the new KSK (which it must), then new KSK is trusted for validation even if it’s not in the trust anchor set.
 - Also complicated due to root zone DNSSEC design.
- Have validators self-report?
RFC 8145 -- Signaling Trust Anchor Knowledge in DNS Security Extensions (DNSSEC)
RFC 8145 – Key Tag Signaling

- Validators periodically report trust anchor key tags.
- What’s a key tag?
 - A 16-bit integer that identifies and enables efficient selection of DNSSEC public keys. Much like a ones’ complement checksum.
 - 19036 – key tag for KSK-2010
 - 20326 – key tag for KSK-2017
- Reported to a zone’s authoritative name servers.
- Should be transmitted about as frequently as DNSKEY expire.
Two Forms of Key Tag Signaling

- edns-key-tag option.
 - An appended option code in the ENDS0 / OPT record

- Separate key tag query.

- Key tag encoded in query name, using hexadecimal representation.
 - 19036 = hex 4a5c
 - 20326 = hex 4f66
Timeline & Implementations

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 December</td>
<td>draft-ietf-dnsop-edns-key-tag-00</td>
</tr>
<tr>
<td>2016 July</td>
<td>First implementation in BIND</td>
</tr>
<tr>
<td>2017 February</td>
<td>draft-ietf-dnsop-edns-key-tag-05</td>
</tr>
<tr>
<td>2017 April</td>
<td>RFC 8145</td>
</tr>
<tr>
<td>2017 April</td>
<td>First implementation in Unbound</td>
</tr>
<tr>
<td>2017 May</td>
<td>Start collecting data</td>
</tr>
</tbody>
</table>

BIND: ‘trust-anchor-telemetry’ defaults to ‘yes’

Unbound: initially ‘trust-anchor-signaling’ defaults to ‘no’, changed to ‘yes’ around October 1, 2017
EDNS0 vs Qname Key Tag Signals

- BIND and Unbound implement qname-based signaling.
- Any evidence of the edns-key-tag option code (14)?
- Scanned 7 days of pcap files
- Found TWO packets with EDNS0 option edns-key-tag!
 - But really looks like COOKIE (10); optionlen = 8, versus 2
 - Bad UDP checksum
 - → bitflip in option code

- Qname wins!
Data
Data Sources

- Key Tag signals are sent to the name servers authoritative for the key they represent.
- In this case, the root zone.
- This data comes from A-root and J-root.
- Selection bias caveat: data provided by only relatively recent implementations.
Data Sample

```
SELECT `timestamp`, lower(qname), dstip, srcip, year, month, day 
FROM some_hadoop_hive_table 
WHERE lower(qname) rlike '^_ta-' 
AND qtype = 10 
AND product = 'root';
```

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>Qname</th>
<th>Source IP Address</th>
<th>Destination IP Address</th>
<th>Year</th>
<th>Month</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500479443</td>
<td>_ta-4a5c</td>
<td>128.x.x.x</td>
<td>192.58.128.30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500439539</td>
<td>_ta-4a5c</td>
<td>2a00:x:x::x</td>
<td>2001:503:ba3e::2:30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500476401</td>
<td>_ta-4a5c</td>
<td>2001:x:x::x</td>
<td>2001:503:c27::2:30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500476401</td>
<td>_ta-4a5c</td>
<td>2001:x:x::x</td>
<td>2001:503:c27::2:30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500495841</td>
<td>_ta-4a5c-4f66</td>
<td>188.x.x.x</td>
<td>198.41.0.4</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500464521</td>
<td>_ta-4a5c</td>
<td>5.x.x.x</td>
<td>192.58.128.30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500476401</td>
<td>_ta-4a5c</td>
<td>2001:x:x::x</td>
<td>2001:503:c27::2:30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500476401</td>
<td>_ta-4a5c</td>
<td>194.x.x.x</td>
<td>198.41.0.4</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500476401</td>
<td>_ta-4a5c</td>
<td>2001:x:x::x</td>
<td>2001:503:c27::2:30</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500476401</td>
<td>_ta-4a5c</td>
<td>194.x.x.x</td>
<td>198.41.0.4</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>1500495841</td>
<td>_ta-4a5c-4f66</td>
<td>188.x.x.x</td>
<td>198.41.0.4</td>
<td>2017</td>
<td>7</td>
<td>19</td>
</tr>
</tbody>
</table>
Data Processing

- For each day...
- Find key tag queries...
- For only the root zone...
- Count number of source IPs whose key tags contain:
 - KSK-2010 only
 - KSK-2017 only
 - KSK-2010 AND KSK-2017
 - KSK-2010 OR KSK-2017
Root Zone Key Tag Signaling --- Number of Sources

Sources always signaling 2010 TA only.

Sources sometimes signaling 2010 TA and sometimes 2010+2017 TAs

Sources always signaling 2010+2017 TAs only

- 2010
- 2010/2010+2017
- 2010+2017
Non-IANA Key Tags

• How often do we see “unexpected” key tags?

• Observed 19 key tags for root other than 19036 and 20326.

• From less than 10 distinct source IPs per day.
Root Zone Key Tag Signaling — Unexpected Key Tags

Sources per day

May Jun Jul Aug Sep Oct

- Unexpected
- Expected+Unexpected
- Expected
How often do we see key tag queries?

• Do validators report more than once per time-to-live?

• Examine timestamps from self-operated instances of BIND and Unbound.

• Is a partial view useful? e.g., A & J versus all roots?

• Calculate median time between queries from same source.

• Display results as distribution of medians.
Root Zone Key Tag Signaling -- Time Between Signals
Conclusions

- Signals from BIND (and Unbound) appear to be of reasonably good quality.
- Probably a strong selection bias due to newness of the protocol.
- Low level of noise, for now anyway.
- edns-key-tag option may never get deployed.

- ISC, Thank you!
- NLnet Labs, thanks for changing trust-anchor-signaling to ‘yes’ by default.
- Other vendors, please consider implementing RFC 8145.