Wow, that is still a lot of packets

Roy Arends | ICANN | ICANN DNS Symposium

Introduction

® How we measure large datasets
® Simple classifications

® Aggregate counts

® Notable things

® Conclusion

NNNNN

How we measure large datasets

® L root: strong XZ compressed CBOR files
® About 235 servers over 145 locations
® Every 10 minutes (288 files per day, per server)
® Total 67680 files per day
® Process faster than 0.78 files/sec to avoid overflow

® Broot: strong XZ compressed PCAP files
® Large set, "rotated” by size, not by time.
® Sizeis about 2G uncompressed.
® About 1200 files per day, on average
® 20 seconds to decompress
® 6 seconds to parse (dns_parse)
® 4 seconds to grep/sed/awk
® 1 day of traffic would take half a day to process

How we measure large datasets

OBNORNORNORNONNO) O]

ONNO

We looked at
® Hadoop, Hbase, MongoDB, Cassandra, Turing, etc, etc
While we’re getting all the data in, we needed a temporal solution.

UNIX file system.

ASClIlI files as “index” to PCAP files.
Use GREP to find strings/addresses
Use AWK to count, find substrings, etc
Use SORT to sort

Gnu parallels to use multiple cores

Simpler to use than most of the other solutions.
Fast enough to do everyday analytics

How we measure large datasets

® Solution: build ASCIl indexes from responses only
® Optimised version of dns_parse

® Decompress and parse each each file to ASCII output once
® In parallel (gnu parallel is your friend)

® Optimise further by:
® Storing ascii output per RD_OPCODE_ANCOUNT_AA_RCODE file
® One DNS response per line
® Lowercase gname & Uppercase IPv6 avoids grep collision
® Escape real dots & commas
® Since commas are separators within a line
® lIgnore Query Count, Authority and Additional count
® Keep all flags and some EDNS info

® Processing this takes about an hour per day of traffic (b-root)
® Only needs to be done once.

How we measure large datasets

Parsing file: 20170210-121520-00590950.lax.pcap.xz leads to 15 new files

20170210-121520-00590950.lax.pcap.ND_NOTIFY_0_NA_REFUSED

20170210-121520-00590950.lax.pcap.ND_UPDATE_0_NA_REFUSED
20170210-121520-00590950.lax.pcap.ND_QUERY_0_AA NOERROR
20170210-121520-00590950.lax.pcap.RD_QUERY_0_AA NOERROR
20170210-121520-00590950.lax.pcap.ND_QUERY_0_AA_NXDOMAIN
20170210-121520-00590950.lax.pcap.RD_QUERY_0_AA_NXDOMAIN
20170210-121520-00590950.lax.pcap.ND_QUERY_0_NA_FORMERR
20170210-121520-00590950.lax.pcap.RD_QUERY_0_NA_FORMERR
20170210-121520-00590950.lax.pcap.ND_QUERY_0_NA_NOERROR
20170210-121520-00590950.lax.pcap.RD_QUERY_0_NA_NOERROR
20170210-121520-00590950.lax.pcap.ND_QUERY_0_NA_REFUSED

20170210-121520-00590950.lax.pcap.RD_QUERY_0_NA_REFUSED

20170210-121520-00590950.lax.pcap.ND_QUERY_1_AA NOERROR
20170210-121520-00590950.lax.pcap.RD_QUERY_1_AA NOERROR
20170210-121520-00590950.lax.pcap.ND_UPDATE_0_NA NOTAUTH

Which contains lines like:
216.109.3.167,e6987.a.akamaiedge.net.,1,U-D
(Source address, gname, gtype, bits)

ICANN

Simple classification

® For all responses, classify per:

® RD bit

® Opcode

® Are there Answers in Answer section
® AAbit Set or Clear

® RCODE

NNNNN

Simple classification

AA RCODE Ans Description

Set NOERROR 0 NODATA

Set NOERROR 1+ Auth Answer

Set NXDOMAIN 0 NXDOMAIN

Set NXDOMAIN 1+ NXCNAME

Clear NOERROR 0 Delegation

Clear NOERROR 1+ Cached ans.

Clear NXDOMAIN 0 Cached NXD.
Clear NXDOMAIN 1+ Cached NXCNAME

ICANN

Crickets chirping

ICANN

Wow, That’s a Lot of Packets

Duane Wessels, Marina Fomenkov

Abstract— Organizations operating Root DNS servers re-
port loads exceeding 100 million queries per day. Given the
design goals of the DNS, and what we know about today’s In-
ternet, this number is about two orders of magnitude more
than we would expect.

With the assistance of one root server operator, we took a
24-hour trace of queries arriving at one of the thirteen root
servers. In this paper we analyze these data and use a simple
model of the DNS to classify each query into one of nine cat-
egories. We find that, by far, most of the queries are repeats
and that only a small percentage are legitimate.

‘We also characterize a few of the “root server abusers,”
that is, clients sending a particularly large number of
queries to the root server. We believe that much of the root
server abuse occurs because the querying agents never re-
ceive the replies, due either to packet filters, or to routing
issues.

Keywords— DNS root server

1. BACKGROUND: DNS 101

The Domain Name System (DNS) is a fundamental
component of the modern Internet [1], providing a critical
link between human users and Internet routing infrastruc-
ture by mapping host names to IP addresses. The DNS
utilizes a hierarchical name space divided into zones, or
domains. This hierarchy is manifested in the widespread
“dots” structure. For example, com is the parent zone for
example.com, microsoft.com, cnn.com, and ap-
proximately 20 million other zones.

Each zone has one or more authoritative name servers.
These are dedicated servers, whose job is to answer queries
for names within their zone(s). For example, UCSD has
three authoritative name servers. An application that needs
to know the IP address for www.ucsd.edu can send a
DNS query to one of those servers, which then returns

The Measurement Factory, Inc., Boulder, Colorado, E-mail:
wessels@measurement-factory.com.

CAIDA, San Diego Supercomputer Center, University of California,
San Diego. E-mail: marina@caida.org.

Support for this work is provided by WIDE and DARPA NMS
N66001-01-1-8909.

an authoritative answer. If the application does not know
where to send a query it asks the servers in the parent
zone. In the example above, not knowing anything about
ucsd. edu, the application should send a query to the au-
thoritative server for the edu zone. If the application does
not know about the edu zone, it queries the “root zone.”
This process is called recursive iteration.

The DNS root zone is served by 13 name servers (not to
be confused with the 13 generic top-level domain servers)
distributed across the globe. Thirteen is the maximum
number of root servers possible in the current DNS archi-
tecture because that is the most that can fit inside a 512-
byte UDP reply packet. Ten root servers are located in the
U.S., two are in Europe, and one is in Asia.! The root
zone and the root name servers are vital because they are
the starting points for locating anything in the DNS. With-
out them, the DNS and hence almost every application we
use (the Web, ssh, email) would be rendered unusable.

DNS clients, or resolvers, that query name servers,
come in one of two flavors: stub and recursive. Stub re-
solvers, typically found in user applications, such as web
browsers, ssh clients, and mail transfer agents, are rather
primitive and mostly rely on smarter recursive resolvers
that understand name server referrals. Recursive resolvers
are usually implemented in specialized DNS applications
such as the Berkeley Internet Domain Name (BIND) [2]
server and Microsoft’s DNS server. Most organizations
operate local recursive name servers.

Recursive name servers cache name server responses,
including referrals. Caching conserves network resources
because intermediate servers do not need to query the root
name servers for every request. For example, the name
server learns that a.gtld-servers.net and others
are authoritative for the com zone and sets the time-to-
live (TTL) for this information. Typical TTLs for top level
domains are on the order of 1-2 days.

In theory, a caching recursive name server only needs to
query the root name servers for an unknown top level do-
main or when a TTL expires. However, a number of stud-
ies have shown that the root name servers receive many
more queries than they should. In this paper we thor-
oughly investigate and characterize root name server traf-

n fact many of the root name servers are actually multiple hosts be-
hind network load balancers. Some of them even occupy a few physical
locations, employing IPv4 anycast to operate under a single IP address.

Wow, That’s a Lot of Packets

Duane Wessels, Marina Fomenkov

Type Count Percent
Unused Query Class 36,313 024
A for A 10,739,857 7.03
Unknown TLD 19,165,840 12.5
Nonprintable in query 2,962,471 1.94
RFC1918 PTR 2,452,806 1.61
Identical Query 38,838,688 254
Repeated Query 68,610,091 44.9

Referral Not Cached 6,653,690
Legitimate 3,284,569

TABLE II
QUERY CLASSIFICATION RESULTS (24-HOUR PERIOD ON 4
OCTOBER 2002 AT THE F-ROOT DNS SERVER).

more queries than they should. In this paper we thor-
oughly investigate and characterize root name server traf-

n fact many of the root name servers are actually multiple hosts be-
hind network load balancers. Some of them even occupy a few physical
locations, employing IPv4 anycast to operate under a single IP address.

Simple ad-hoc traffic measurement

® B-ROOT RSSACO002 stats for 10t Feb 2017
® total: 3.0 G responses (3.015.731.920)
® 83.5% UDP-v4
® 14.0% UDP-v6
® 2.2% TCP-v4
® 0.24 % TCP-v6

® 99% UDP queries saw a response.
® We’re going to ignore TCP for this effort (not statistically significant)

® Observed in actual traffic: 2941687705 UDP responses
® Erroris 0.00037 (insignificant)

2 | 12

Simple classification

RCODE Description

NOERROR NODATA
Set NOERROR 1+ Auth Answer
Set NXDOMAIN 0 NXDOMAIN

NOERROR

0 Delegation

| 13

Simple classification

AA RCODE Ans Description
Set NOERROR 0 NODATA
Set NOERROR 1+ Auth Answer
Set NXDOMAIN 0 NXDOMAIN
Clear NOERROR 0 Delegation

| 14

ICANN

Simple classification

AA RCODE Ans Description

Set NOERROR 0 NODATA

Set NOERROR 1+ Auth Answer

Set NXDOMAIN 0 NXDOMAIN

Clear NOERROR 0 Delegation
FORMERR Huh?
NOTIMP Can'tdoit
REFUSED Go Away
NotAuth Won’t do it

| 15

ICANN

Simple classification

AA RCODE Ans Description
Set NOERROR 0 NODATA
Set NOERROR 1+ Auth Answer

NOERROR

0

Delegation

| 16

Simple classification

AA RCODE Ans Description
Set NOERROR O NODATA
Set NOERROR 1+ Auth Ans.
Clear NOERROR O Delegation

ICANN

Simple classification

AA RCODE Ans Description
Set NOERROR O NODATA 25.3M .84%
Set NOERROR 1+ Auth Ans. 99.8M 3.31%
Clear NOERROR O Delegation 1018M 34 %

34% of all queries result in delegations

| 18

ICANN

What about caching?

® 34% of all queries result in delegations
® All delegation point NS records havea 2 day TTL
® Proper caching: at most 1 query for per TLD per source IP

® Of the 1018336727 delegation responses (34% of all responses):

2 | 19

NNNNN

What about caching?

® 26% of all queries result in delegations
® All delegation point NS records havea 2 day TTL
® Proper caching: at most 1 query for per TLD per source IP

® Ofthe 1018336727 delegation responses (34% of all responses):
® 997673948 are duplicates

® 98 %

® Conclusion: 20662779 “1st” responses, the rest could have been cached

| 20

What does bogus look like

® 2.7 % of all Authoritative NODATA responses are for type A6

® Large amount of proper delegations are for RFC1918 reverse address
space (and other lame addresses)

® Reflection and Amplification attacks
® Spam traffic (loads of MX queries)

® DGA related traffic

2 | 21

NNNNN

Conclusion

® The root server system is One Big Filter for loads of bad queries
® Only 34% result in a delegation

® The bulk of the 62% should never have been send in the first place
® The bulk of the 34% should have been properly cached.

® The 34% of delegations still contains loads of DGA, RFC1918 address
space, spam traffic.

® Itis nearly impossible to “fix” any of this “at the root”
® (if you don’trespond, things get worse)

® Some recommendations for resolvers:
® Properly cache, local root copy, ACLs, domain block lists

2 | 22

Questions?

6 | 23

NNNNN

