
Enabling Linguistic Diversity
of the Domain Name System

Sarmad Hussain, Senior Director IDN and UA Programs

ICANN DNS Symposium 2022
16 November 2022

Root Zone Label Generation Rules

| 2

Overview

¤ Many of the Internet users globally use their own script and are not
familiar with English letters used in ASCII encoding.

¤ Internationalized Domain Names (IDNs) allow for such users to
navigate the Internet in their local languages and scripts, making the
Internet more inclusive.

¤ Enabling IDNs requires clear rules for forming valid domain labels.

¤ Root Zone Label Generation Rules (RZ-LGR) define such rules for
top-level domains (TLDs).

¤ The presentation provides details on the following aspects of RZ-LGR:
¡ Need
¡ Design principles
¡ Development process
¡ Scope
¡ Solution for Repertoire, Variants and Rules

| 3

Basis for the Root Zone Label Generation Rules (RZ-LGR)

¤ Internationalized Domain Names for Applications (IDNA): Definitions and
Document Framework (RFC5890) presents guidance on determining the
IDNs.

¤ Section 2.3.2.3 states:
¡ DNS zone administrators may impose restrictions, beyond those

imposed by DNS or IDNA, on the characters or strings that may be
registered as labels in their zones [including the root zone].

¡ Because of the diversity of characters that can be used in a U-label
and the confusion they might cause
• such restrictions [“variant definitions and rules beyond those

imposed by DNS or IDNA”] are mandatory [emphasis added] for
IDN registries and zones.

• even though the particular restrictions are not part of these
specifications (the issue is discussed in more detail in Section 4.3
of the Protocol document [RFC5891]).

https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc5890
https://www.rfc-editor.org/rfc/rfc5891
https://www.rfc-editor.org/rfc/rfc5891

| 4

Basis for the RZ-LGR

¤ Section 4.4 of RFC 5890 states:
¡ It is worth noting that there are no comprehensive technical solutions

to the problems of confusable characters.
¡ One can reduce the extent of the problems in various ways, but

probably never eliminate it.
¡ Some specific suggestions about identification and handling of

confusable characters appear in a Unicode Consortium publication
[Unicode-UTR36].
• For example: combining mark order spoofing, inadequate

rendering support, and others.

https://tools.ietf.org/html/rfc5890
http://www.unicode.org/reports/tr36/tr36-15.html
http://unicode.org/reports/tr36/
http://unicode.org/reports/tr36/

| 5

RZ-LGR – The Solution for the Root Zone

¤ For achieving the secure and stable definition of IDNs as top-level
domains (TLDs) to support the different languages and scripts used
globally, Root Zone Label Generation Rules (RZ-LGR) is needed.
¡ Builds on the Internationalized Domain Names for Applications (IDNA)

standards including RFCs 5890, 5891, 5892, 5893 and their
successors.

¡ Uses the principles outlined in RFC 6912.
¡ Follows the LGR Procedure developed by the community.

¤ Uses the machine-readable XML based LGR formalism proposed in RFC
7940. Also published is the corresponding human-readable HTML form.
¡ Description.
¡ Repertoire of code points.
¡ Variant code points with types (allocatable, blocked).
¡ Label evaluation rules.

https://www.icann.org/resources/pages/root-zone-lgr-2015-06-21-en
https://www.icann.org/en/system/files/files/lgr-procedure-20mar13-en.pdf

| 6

Principles Guiding the RZ-LGR Design

¤ Principles for Unicode Code Point Inclusion in Labels in the DNS
(RFC6912) mentions:
¡ most operators of zones should probably not permit registration of

U-labels using the entire range.
¡ presents a set of principles that can be used to guide the decision

whether a Unicode code point may be included in the repertoire of
permissible code points in a U-label in a zone.

https://www.rfc-editor.org/rfc/rfc6912.html

| 7

Principles Guiding the RZ-LGR Design

¤ More-restrictive rules going up the DNS tree.

¤ Principles Applicable to All Public Zones:
¡ Longevity - properties of code point stable across Unicode versions.
¡ Least Astonishment – support expected code points otherwise don’t.
¡ Contextual Safety – prevent where it can be used maliciously.
¡ Conservatism – when in doubt, don’t include a code point.
¡ Inclusion – every code point excluded unless explicitly included.
¡ Simplicity – rules to include a code point be simple to understand.
¡ Predictability – rules to include predictable with requisite knowledge.
¡ Stability – list of permitted code points to change slowly.

¤ Principle Specific to the Root Zone:
¡ Letter – allowed code points should be alphabetic (e.g. not digits).

| 8

LGR Procedure to Develop the RZ-LGR

¤ Maximal Starting Repertoire as
the starting point – by
Integration Panel (IP).

¤ Three step process for RZ-
LGR:
¡ Develop script-based

proposal – by community-
based Generation Panel
(GP) using MSR.

¡ Review proposal – jointly
by IP and GP.

¡ Approval and integration
into RZ-LGR – by IP.

| 9

Scripts Covered in RZ-LGR

¤ MSR contains only 28 scripts aligned with scripts ”Recommended” for
Identifiers by the Unicode standard out of the 159 encoded in Unicode
14.0.

¤ Does not include the following categories of script by Unicode standard.
Complete script lists in UAX#31 (Tables 4, 5 and 7).
¡ “Limited Use” scripts
¡ ”Excluded” scripts.

¤ RZ-LGR-5 covers twenty-six scripts:
¡ Arabic, Armenian, Bangla, Chinese (Han), Cyrillic, Devanagari,

Ethiopic, Georgian, Greek, Gujarati, Gurmukhi, Hebrew, Japanese
(Hiragana, Katakana, and Kanji [Han]), Kannada, Khmer, Korean
(Hangul and Hanja [Han]), Lao, Latin, Malayalam, Myanmar, Oriya,
Sinhala, Tamil, Telugu, and Thai.

¤ The scripts covered may expand over time.

https://unicode.org/reports/tr31/

| 10

Language Status (using EGIDS) for Inclusion in RZ-LGR

¤ Many languages can be
written using a script.

¤ Languages analyzed for
RZ-LGR selected with a
conservative criteria based
on their status using
Expanded Graded
Intergenerational Disruption
Scale (EGIDS):
¡ 0-4 – included.
¡ 5 – included on case-

to-case basis.
¡ > 6 – not included as

their orthography may
not be stable or well
understood.

¤ The languages covered
may expand over time.

https://www.ethnologue.com/about/language-status

| 11

Repertoire Analysis for RZ-LGR

Unicode

IDNA2008

Maximal
Starting

Repertoire
(MSR)

RZ-LGR

| 12

Repertoire Not Shortlisted by MSR

¤ Historic and phonetic extensions to modern scripts.

¤ Code points that pose special risks, e.g., due to instability of encoding.

¤ Code points with strong justification to exclude:
¡ Archaic, historic, symbolic, and have little chance to gain use in

modern context.
¡ PVALID as unintended consequence of the IDNA2008 algorithm.
¡ Highly confusable with an existing and common punctuation character.
¡ Exclusively used for phonetic, liturgical or other specialized purposes.

¤ Non-spacing combining marks, where precomposed forms are also
encoded.

¤ Digits.

| 13

Repertoire Shortlisted by Script Community

¤ Include only general purpose and common use code points.

¤ Code points may not be included for many reasons:
¡ Historic use or no longer common use:

• Arabic: 0690 ڐ – historic use only, now replaced by ھڈ .
• Kannada: ಱ 0CB1 - obsolete character, not used in modern

Kannada.
• Gurmukhi: ◌ਃ 0A03 - limited or declining use.

¡ Special purpose:
• Devanagari: U+0929 ऩ - not in any spoken language;

transcribes Dravidian alveolar n.
¡ Usage not known in any language included for RZ-LGR:

• Cyrillic: ӭ 04ED – possibly used in Sami with EGIDs 8b.
• Arabic: ڛ 069B – no evidence found of active use.

| 14

Summary of Community Analysis for Repertoire

| 15

Understanding Variant TLDs

Code points technically distinct but considered the “same” by the script community
– non-deterministic!

| 16

Categories of Variant Code Points - Identical

¤ Visually identical.
¡ Same:

• Armenian, Cyrillic, Greek, Latin: օ о ο o 0585 043E 03BF 006F
• Japanese: へヘ 3078 30D8

¡ Same in a joined form.
• Arabic:

– ك بك كب بكب :0643
– 06A9: ک بک کب بکب

• Khmer:
– ស្ !"ត #$%&"#$'("!"#$)&"* ស$

– ស្ !"ដ #$%&"#$'("!"#$)+"* ស&

| 17

Categories of Variant Code Points - Similar

¤ Similar but not identical.
¡ Visually similar:

• Devanagari and Gurmukhi: उ ਤ 0909 0A24
• Kashmiri vowel signs in Devanagari: ॳ अ ं0973 0905+0902
• Korean Hangul and Hanja: 슴合 C2B4 5408

¡ Similar due to cursive/handwriting form:
– Latin: f ƒ 0066 0192

¡ Similar with stylistic variation:
– Arabic: ک ڪ 06A9 06AA

¡ Similar in marks:
• Latin: ğ ǧ 011F 01E7 (breve and caron)

| 18

Categories of Variant Code Points – Visually Distinct

¤ Considered equivalent even when not visually similar.
¡ Phonetically same or similar:

• Arabic: ه ة 0647 0629
• Ethiopic: ሀ HA ሐ HHA ኀ XA (1200 1210 1280)

¡ Alternate writing convention:
• Arabic Western (African) vs. Conventional: 06A7 0642 ق ڧ
• Chinese Simplified vs. Traditional: 万萬 4E07 842C

¡ Spatial rotation of dots:
• Arabic: 062 ٺ تA 067A

¡ With or without marks:
• Greek tonos and dialytica: ι ί ϊ ΐ 03B9 03AF 03CA 0390

¡ Contextual variation:
• Hebrew normal and final form: פף 05E4 05E3

¡ Semantically same:
• Chinese: 叢欉 53E2 6B09

| 19

Scripts With Variant Code Points

¤ Arabic

¤ Armenian

¤ Bengali

¤ Cyrillic

¤ Devanagari

¤ Ethiopic

¤ Georgian

¤ Greek

¤ Gujarati

¤ Gurmukhi

¤ Han

¤ Hebrew

¤ Japanese

¤ Kannada

¤ Khmer

¤ Korean

¤ Lao

¤ Latin

¤ Malayalam

¤ Myanmar

¤ Oriya

¤ Sinhala

¤ Tamil

¤ Telugu

¤ Thaana

¤ Tibetan

¤ Thai

Variant code points
No variant code points
Work in progress

Code point variants are as defined in the RZ-LGR - deterministic.
3,763 variant sets in RZ-LGR.

| 20

Types of Variant Code Points

¤ Two main types of variant mappings:
¡ Blocked – label with a code point with this type cannot be

delegated.
¡ Allocatable – label with only this type of code points can be

considered for delegation.

¤ Design consideration: Maximize blocked variant labels (for end-user
security) and minimize allocatable variant labels based on usability (for
manageability).
¡ Blocked - by default.
¡ Allocatable: In few cases, where there is a clear usability

requirement documented by the script community.

¤ 58 allocatable and 5,806 blocked variant mappings (excluding CJK).

| 21

Label Evaluation Rules

¤ Context of a character.
¡ Complex scripts are inherently rule based.

• Different categories of character: consonants,
vowels, tone marks, others.

• In Abugida scripts, there is a specific structure of a
well-formed orthographic syllable.

¡ Script users apply these rules when writing, and so
same rules are needed when encoding labels.

¡ Multiple code point sequences can generate the same
orthographic syllable.

¡ Out of context code points.
• Not predicted by users.
• May not be supported in fonts.
• May have unpredictable rendering by rendering

engines.

| 22

Label Evaluation Rules

¤ Context of a character.
¡ Lao vowel placement rules:

• A vowel-before precedes the main consonant cluster C.
• A vowel-above or a vowel-below follows the main consonant C.
• A vowel-after follows the main consonant C or a tone mark or a

vowel-above.
¡ Thai tone mark rule:

• A tone mark can only follow a consonant, an above-vowel or a
below-vowel.

¡ Tamil Virama rule:
• Virama must be preceded by a consonant.

| 23

Label Evaluation Rules

¤ Place of a character.
¡ Lao repetition sign ໆ (0EC6) can only occur 0-3 times at the end

of a label.

¤ Reducing variant labels.
¡ Arabic:

• Cannot mix ه wtih ه 06C1 0647
• Cannot mix ة with ة 0629 06C3

¡ Myanmar:
• No mixing from two sets of code points to limit the number of

variants generated.

| 24

Label Evaluation Rules

¤ The rules fix the order and place of characters to only well-formed and
predictable options.
¡ Supported by fonts and rendering engines.

¤ The rules also help minimize allocatable variant labels, as needed.

¤ Number of rules140:
¡ Used as context rule - 100.
¡ Place of character - 98.
¡ Used to trigger actions - 28.
¡ Used only in another rule - 14.

| 25

Conclusions for RZ-LGR

¤ Creates a solution for top-level domains in multiple scripts and languages,
balancing different design principles, while being sufficiently conservative.

¤ Developed by the relevant script community with expertise of the script.
¡ Includes the repertoire needed for common and general-purpose use.
¡ Gives a deterministic definition of variant labels.
¡ Allows for domain names which are well-formed for the community.

¤ Provides a solution which is technically viable and secure for the end-users.
¡ Repertoire.
¡ Variant labels.
¡ Context rules.

¤ Enables a solution which addresses the usability of domain names.

¤ Provides a solution which can evolve in a stable manner (e.g., adding
support of more languages and scripts).

| 26

Engage with ICANN

Visit us at icann.org

Thank You and Questions

Email: IDNProgram@icann.org

flickr.com/icann

linkedin/company/icann@icann

facebook.com/icannorg

youtube.com/icannnews soundcloud/icann

slideshare/icannpresentations

instagram.com/icannorg

https://www.flickr.com/photos/icann
https://www.linkedin.com/company/icann
https://www.twitter.com/icann
https://www.facebook.com/icannorg
https://www.youtube.com/user/ICANNnews
https://soundcloud.com/icann
https://www.slideshare.net/icannpresentations
https://www.instagram.com/icannorg

