DNSSEC – The Journey at a Crossroads

A Personal View of the state of the Extensions

Edward Lewis

IDS 2023
5 September 2023
• **DNSSEC: Maybe it’s the Journey and not the Destination**
 – A 2008 lament that DNSSEC progress was slow and getting slower
 – Listed the benefits the effort had yielded and wondered if there was a will to progress

• 15 years later, time to revisit this idea
My Perspective

- Wrote first (and second) DNSSEC zone signer (1996-1997)
- Wrote the first DNSSEC validator (1997)
- Attended the first DNSSEC Deployment meeting (1998)
- Ran many operational workshops (1999-2004)
- *DNSSEC: Maybe it’s the Journey and not the Destination* (2008)
- TCR for Root KSK Ceremonies (2010-2014)
- Measuring DNSSEC records in use at TLDs since 2011
- 2002-> worked for DNS registries, DNS hosting, and now ICANN
DNSSEC – The Journey and The Crossroads

• Initial development: mid 1990’s
• First meeting on DNSSEC deployment: April 1, 1998
• Current baseline definition: 2004

• In 2023:
 – Validation: APNIC Labs measures (world wide) around 30%
 – Signing: 4% of .COM (and many other TLDs) names have DS records
 – Criticism that DNSSEC is too hard to run and solves a non-problem
 – Lots of minor updates to the extensions actively proposed
Is DNSSEC still needed?

• The state of DNS is much better than when DNSSEC development started
 – Better software, operating procedures

• We have TLS. Is application security what we need?
 – Can the Internet be used securely without a trusted naming (and routing) system?

• Can trusted code run on untrusted machines?
 – Can code be self-reliant, decrypt itself when it needs to run?
Why is this Important for Emerging Technologies?

• To accommodate emerging technologies
 – Should they have to build in their security layers?
 – Or should they work on a secured base?
 – How well-secured?

• How could we make DNSSEC ready for emerging technologies?
Opinion

• I think we still need DNSSEC
 – But the current form is not working out

• For emerging technologies
 – Provide a secured, level-playing field

• The goals of DNSSEC are sound; but something is flawed
 – The design, for the 1990’s environment, isn’t fitting right
 – Operating systems and cryptography have evolved
 – The field of DNS operations hasn’t just evolved, it began
What DNSSEC was Set to Solve

• Data Authenticity
 – That the data was as the zone administrator published

• Data Integrity
 – That the entire answer was obtained

• Negative Answer Proof
 – This seems an odd goal, but the DNS allowed for empty responses
 – Empty is hard to secure
DNS Security Strategy

• Data Security
 – Digital signatures and distribution of public keys (DNSSEC)

• Channel Security
 – Message security (TSIG and more)

• Platform Security
 – OS, host, facility, business processes
DNSSEC Hopes

• Backwards compatible
 – DNSSEC was foreseen as following a slow adoption curve
 – Co-existence with un-signed DNS was a must

• Be as flexible to counter discipline enforced on the DNS
 – Bend, but don’t break, when it comes to “secure”

• Be operations friendly
 – This was a driver for the early workshops
The State of the Internet when DNSSEC Began

- Host security was weak
 - Private keys had to be air-gapped away from the network
- Cryptography
 - Export-restricted, patent-encumbered technologies
- Lots of non-standard extensions to the DNS Protocol
- DNS-as-a-service market did not exist
- Middleboxes (firewalls) were new/controversial
- No anycast routing
Impact on DNSSEC Design

- No name server access to private keys
 - All responses had to be pre-computed on a non-connected machine
- Had to accommodate all known protocol elements
 - The protocol was not widely understood
- Create ”name order” (sorting)
- Incorporate wall-clock time, mix with TTL rules
- No consideration for changing operators (modern market)
- No concern about response size (middleboxes)
Securing Negative Answers (DNSSEC Goal #3)

• Have to pre-compute all answers, not knowing the query
 – ”Here is what I have, you can see the data you want is not here”
 – Enables zone walking
 – Requires a sorted order of names in a zone
 • This one point is why BIND 9 replaced BIND 8 in the late 1990’s

• NSEC3 w/opt-out and Wildcards have never ”gotten along”
 – A corner case that could not be resolved
A “generic” response record created for synthesized answers
- Allowance made for a different owner name, via label count
- The “upper labels” of the query name had to match the wildcard (source of synthesis) name, “lower/leaf” labels were excluded
- The data (RDATA) field was fixed to one value

Records in a message response
- Have to show the process was followed, not just the result
- The reason multiple, signed negative records are needed
Cryptography and Key Handling

• Zones were assumed to run with multiple security algorithms
 – Validator still had to know what to expect
 – Response size was not considered

• A lot of design effort was spent on the child-parent exchange
 – Should the keys be at the parent or child?
 – What signaled “child is not signed”?
Time

- DNSSEC created the need for absolute time
 - Inception/Expiration of signatures
 - Thwart replay attacks, limit damage from hijack

- DNS already had TTL, relative time
 - Limiting TTL values kept data fresh, useful when changing records

- Mixing absolute and relative times is not easy (clipping TTL)

- Hijacking using far-future expiration times was not foreseen
Workshops

• After publishing the initial base definition
 – Series of workshops used to make it operable
 – DS resource record, functional roles created, KSK and ZSK

• Predated the emergence of DNS operations
 – Predated EPP (provisioning) protocol
 – Major DNS hosting companies established 1999-2001
 – Participants were still primarily protocol developers and research
The Crossroads

- DNSSEC addresses needed goals and has a solid design

- But the operations world has different needs today
 - Option: Force fit what is needed upon DNSSEC’s implemented framework
 - Option: Go back to the first goals and reimagine approach

- To be deployed, must be operations-friendly
What Is Needed in Operations?

• Low-risk activities
 – Operators’ chief job is to keep a service up and running

• Easy to monitor, quick to fix
 – When things break, fast restoration is the goal

• Tools with Default Values
 – Operation staffs are not software developer staffs

• Justification
 – Risk/reward must be clear
 – Convince the agency that approves operational changes
• **What does this mean?**
 - Easy to deploy, simple, low-configuration
 - Easy to co-exist, does not negatively impact other systems
 - Easy to maintain, tools available to monitor, raise alert
 - Easy to fix, limit mean time to repair
 - Easy to “get it right”, hard to accidentally break
 - Easy to gain approval from change approval boards
 - Easy tech-refresh, change providers, re-deploy, automate
 - And easy to explain and understand
How Has DNS Changed?

• Next slides will walk through the changed world of DNS
On-line signing

• A brilliant idea ruled out of bounds during early development

• Vendor lock-in (a bit) as a result of not being standard
 – No standard for key sharing within a zone’s different operators
 – Vendors provide means to avoid customers being locked in

• Could design a “standards way” to do on-line signing
With On-line signing...

• Can tailor response to the query name and type
• Major impact is on negative answers
 – No need to sort a zone
 – No need for a type bitmap
 – Never have to see the “whole zone”: friendly to high churn zones
 – Any change impacts just one name
 – Synthesizing response need not alter the RDATA
 – No need for hashing names
Cautions with on-line signing

- The key is vulnerable to exposure, do we need a special negative answer key? Would this increase the size of the DNSKEY resource record set?
- Can the same ZSK work for the signatures on the server and any pre-generated signatures? What about a “Common Signing Key (CSK)” set up?
- There are commercial deployments doing on-line signing, so there are working examples
Parent-Child Key Exchange

• Automating a roll of a Secure Entry Point (aka KSK) key is a work in progress
 – CDS and CDNSKEY proposals
 – CSYNC too, in the spirit that DNSSEC is grafted on top of DNS

• These proposals are still being tinkered with
 – CDS/CDNSKEY defined using polling, with an event-driven mechanism in proposal
Parent-Child Key Exchange Progress

• Although this work is in progress, progress is slow
 – Lack of clarity in the registry, registrant (zone admin) and DNS operator triangle
 • What happens when a change is barred by a registration lock/policy?
 – Real or perceived policy barriers regarding registry work with operators
 – In a study to determine how DNSSEC operators manage keys
 • Finding periods for ZSK was easy, many examples of operator rolling ZSK
 • Finding periods for KSK impossible, even TLD operators are reluctant to roll KSK
Outsourcing DNS Hosting

• Zone admins off-load their work to one/more providers
 – DNS-as-a-service
 – Might be multiple
 – May include DNSSEC signing of the zone
 – “Multi-signer” is one name for this

• Zone admins want to change their providers
 – Besides the ability to share responsibilities between providers
 – Need to be able to roll from one provider to another
 – “Domain name transfers” is one version of this
Multi-signer Considerations

• Validation has to succeed in a caching environment
 – Has to be a way for multi-signers to share the same key set

• More keys means the DNSKEY resource record set grows
 – Can each provider have its own keys? Maybe, maybe not
 – Is there space enough for specialized on-line-only keys?

• DNSSEC rules as written now, make multi-signer difficult
 – Response size impacts
Trust Anchor Considerations

• Trust Anchors are owned/managed by validators
 – Most operators of validators rely on what comes in software distribution

• “Automated Updates of DNSSEC Trust Anchors”
 – Overloads DNSKEY resource record meaning
 – Relies on validators knowing to look for trust anchor signals
 – Has never been used to change DNS security algorithms

• Need an explicit approach to Trust Anchor “suggesting”
Opinions on the Onward Path

• Further determine what is “operations friendly”

• Question old taboos

• Add versioning to the protocol to accommodate change

• Explore needed improvements, judge the effort to get there

• Measure success by deployment rates, operator adoption
Thank You and Questions

Visit us at icann.org
Email: edward.lewis@icann.org

Engage with ICANN

@icann
facebook.com/icannorg
youtube.com/icannnews
flickr.com/icann

linkedin/company/icann
slideshare/icannpresentations
soundcloud/icann
instagram.com/icannorg