Studying DNS Resolver Concentration

Christian Huitema, Alain Durand

November, 2022

IDS
Measuring the Concentration of DNS Resolvers

• Public DNS resolvers offer an alternative to ISP DNS services
 • Concern: concentration of DNS traffic to a few services

• Our challenge:
 • Measure the share of DNS queries going through Public DNS Resolvers
 • Observe market share of these resolvers
 • Understand drivers for adoption of public DNS resolvers
Measuring Market Share Using APNIC Study

- Ad impression creates request to load “single pixel” in unique subdomain of experimenter domain
- Web server and DNS server are controlled by experimenter

![Diagram of web browser, DNS resolver, web server, and DNS server connections.]

- IP Address in Query =>
 - Resolver AS,
 - Resolver country

- IP Address in HTTP =>
 - User AS,
 - User country
Measurements and Limitations

• Sampling of browser traffic
 • Random sampling world wide
 • Millions of queries
 • Lots of statistics: source IP, DNS resolver IP

• Dependency on Google Ads
 • Less data for some countries, e.g., Russia, China
 • No data for “non browser” traffic, e.g., IOT
 • Sampling of countries depends on Google Ads algorithms

• If user behind Proxy, see proxy IP, proxy-chosen DNS resolver
 • Similar issues with VPN
New ITHI Metrics M10, Concentration of DNS Resolver Services

Global measurements show us global numbers, as here “world wide” shares for July 2022
Market Share of Public Resolvers, World Wide

<table>
<thead>
<tr>
<th>Date</th>
<th>All Public DNS</th>
<th>Google DNS</th>
<th>Cloudflare</th>
<th>Open DNS</th>
<th>Level3</th>
<th>Green Team DNS</th>
<th>DNS PAI</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/31/2022</td>
<td>19.4%</td>
<td>16.3%</td>
<td>1.7%</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>3/31/2022</td>
<td>20.2%</td>
<td>17.0%</td>
<td>1.9%</td>
<td>0.7%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.3%</td>
</tr>
<tr>
<td>5/31/2022</td>
<td>20.7%</td>
<td>17.1%</td>
<td>2.1%</td>
<td>0.5%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>7/31/2022</td>
<td>19.6%</td>
<td>16.4%</td>
<td>2.0%</td>
<td>0.5%</td>
<td>0.2%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>9/30/2022</td>
<td>19.4%</td>
<td>16.2%</td>
<td>2.1%</td>
<td>0.5%</td>
<td>0.3%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

- No obvious trend, market shares appear stable
- Hard to separate variations from measurement noise.
What Drives Adoption of Public DNS Resolvers?

• Hypotheses
 • User Choice of browser configuration
 • ISP Choice
 • Others?

• Let’s check against the data
Hypothesis: User Choice

- **Hypothesis:**
 - Users configure their browser to use a Public DNS Resolver

- **Supporting evidence:**
 - Functionality is available in several browsers

- **But:**
 - Few users ever change the default software configuration
 - Sample of large consumer ISP shows low PDNS rate

<table>
<thead>
<tr>
<th>CC</th>
<th>AS Name</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>Reliance JIO Infocom</td>
<td>7.5%</td>
</tr>
<tr>
<td>IN</td>
<td>Bharti Airtel Ltd.</td>
<td>1.3%</td>
</tr>
<tr>
<td>ID</td>
<td>Telekomunicasi Cellular</td>
<td>8.5%</td>
</tr>
<tr>
<td>US</td>
<td>Comcast</td>
<td>5.6%</td>
</tr>
<tr>
<td>GB</td>
<td>Sky UK Ltd</td>
<td>1.7%</td>
</tr>
<tr>
<td>GB</td>
<td>British Telecom</td>
<td>3.0%</td>
</tr>
<tr>
<td>SE</td>
<td>Telia Company AB</td>
<td>4.2%</td>
</tr>
<tr>
<td>GB</td>
<td>Virgin Media Ltd</td>
<td>3.3%</td>
</tr>
<tr>
<td>TR</td>
<td>Turk Telekomunikasyon</td>
<td>8.2%</td>
</tr>
<tr>
<td>US</td>
<td>AT&T Inc.</td>
<td>5.6%</td>
</tr>
<tr>
<td>VN</td>
<td>Viettel Group.</td>
<td>9.2%</td>
</tr>
<tr>
<td>FR</td>
<td>Orange S.A.</td>
<td>3.3%</td>
</tr>
<tr>
<td>DE</td>
<td>Deutsche Telekom AG</td>
<td>2.9%</td>
</tr>
</tbody>
</table>
Share of Public DNS per Country Varies Widely

- For 76 countries, < 10%
- But some countries show >90% share:
 - Chad, Sierra Leone, Central African Republic, Maldives, Zambia, Djibouti, Northern Mariana Islands, Somalia
- Cannot be explained by “user choice” alone
Hypothesis: ISP Choice

- Some Internet Service Providers treat DNS as cost center
- Outsource to Public DNS Resolvers for cost reduction
- Certainly explains some of the data that we see
- ... but not all.
<10%, >90% and In Between?

<table>
<thead>
<tr>
<th></th>
<th>AS <10% PDNS</th>
<th>AS In between</th>
<th>AS >90% PDNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>%NB ISP</td>
<td>26%</td>
<td>48%</td>
<td>26%</td>
</tr>
<tr>
<td>%Total Queries</td>
<td>67%</td>
<td>28%</td>
<td>5%</td>
</tr>
<tr>
<td>%PDNS Queries</td>
<td>19%</td>
<td>51%</td>
<td>29%</td>
</tr>
</tbody>
</table>

- Why so much “in between”?
 - Not explained by previous hypotheses
- Hypothesis: fractional deployment
 - Outsource some regions, not others
- Hypothesis: customer categories
 - Business customers outsourcing their traffic
- Something else?
Summary: Two Known Sources of Public DNS traffic

• Users tweaking browser or DNS configurations
 • Few % of users in large ASes
 • Few users change their default configuration

• ISPs treating DNS as cost center, offloading to PDNS
 • Very common in Africa, South Asia
 • Frequent for small ISP
Further Study:
Unknown Sources of Public DNS traffic

• ISPs offloading a fraction of DNS traffic
 • May appear if doing statistics by Address Prefixes

• Enterprise and other organizations choosing DNS provider
 • May appear if isolating statistics for Enterprise Networks

• Users subscribing to VPN or proxy services
 • Will require new methodology

• Some other unknown...
Hypothesis: VPN and Proxies

- New services:
 - Apple’s Private Relay, Cloudflare’s “WARP”, Google syndication, Mozilla VPN
- Cause traffic to appear “from cloud servers”
- Outside measurement hypotheses

- IP Address in HTTP =>
 - User-AS, Proxy AS!
 - User-country Proxy Country

- IP Address in Query =>
 - Resolver-AS, Chosen by Proxy!
 - Resolver-country Chosen by Proxy!