
Message Digests for DNS Zones
Including Plans for the Root Zone
ICANN DNS Symposium
May 25-27, 2021

Verisign Public

What is a DNS Zone Digest?

• A cryptographic digest, or hash, of the data in a DNS zone
• Embedded in the zone data itself
• Computed by zone publishers
• Verified by zone recipients

2

Verisign Public

Analogous to Checksum Files for Software

3

Verisign Public

How Does it Work?

• Specified in RFC 8976
• Zone data is given as input to a digest function

• Using a well-defined and consistent ordering
• And in a well-defined and consistent format
• Excluding the ZONEMD record itself (and its signatures)

• Digest is included in the zone itself, and (ideally) signed
with DNSSEC

4

Order and
format

553bbccbfadfe36d
1c59e20554c9cc98
c6a007a621bbcac0
f0ff195d24864e12
91227a2837530944
ea833a560807dc48

Compute
digest

Add
digest

DNSSEC
sign

Verisign Public

Why is this Useful?

• Protects zone data “at rest”
• e.g., data security vs channel security

• Useful in distributing zone data between primary and
secondary name servers, especially in modern, complex
environments

• Increased interest in serving root zone data locally (e.g.,
RFC 8806)

• CZDS – Centralized Zone Data Service
• RPZ – Response Policy Zones

5

Verisign Public

Additional Technical Details

6

example. 86400 IN ZONEMD 2018031900 1 1
8ee54f64ce0d57fd70e1a4811a9ca9e849e2e50cb598edf3ba9c2a58
625335c1f966835f0d4338d9f78f557227d63bf6

• Serial field
• Must match SOA record serial

Verisign Public

Additional Technical Details

7

example. 86400 IN ZONEMD 2018031900 1 1
8ee54f64ce0d57fd70e1a4811a9ca9e849e2e50cb598edf3ba9c2a58
625335c1f966835f0d4338d9f78f557227d63bf6

• Scheme field

Value Description Mnemonic
0 Reserved
1 Simple ZONEMD collation SIMPLE
240-254 Private Use
255 Reserved

Verisign Public

Additional Technical Details

8

example. 86400 IN ZONEMD 2018031900 1 1
8ee54f64ce0d57fd70e1a4811a9ca9e849e2e50cb598edf3ba9c2a58
625335c1f966835f0d4338d9f78f557227d63bf6

• Hash Algorithm field

Value Description Mnemonic
0 Reserved
1 SHA-384 SHA384
2 SHA-512 SHA512
240-254 Private Use
255 Reserved

Verisign Public

Additional Technical Details

9

example. 86400 IN ZONEMD 2018031900 1 1
8ee54f64ce0d57fd70e1a4811a9ca9e849e2e50cb598edf3ba9c2a58
625335c1f966835f0d4338d9f78f557227d63bf6

• Digest field
• Length depends on chosen Hash Algorithm

• Always 48 octets for SHA-384
• Always 64 octets for SHA-512
• Never less than 12 octets for any hash algorithm, including private

use

Verisign Public

Implementations

Implementation Publish Verify Notes

ldns-zone-digest yes yes RFC reference implementation

Unbound no yes auth-zone stanza

ldns yes yes ldns-signzone and ldns-verifyzone

dns-tools from NIC Chile Labs yes yes

PowerDNS Resolver work in progress

Knot Resolver work in progress

BIND9 parse only

Perl Net::DNS parse only

10

Verisign Public

Benchmarks with ldns-zone-digest

11

Verisign Public

Example Using Unbound (unreleased version)
server:

verbosity: 3
interface: 127.0.0.1

auth-zone:
name: “example”
zonefile: “example.zone”

[1619565823] unbound[73900:0] debug: module config: "validator iterator"
[1619565823] unbound[73900:0] notice: init module 0: validator
[1619565823] unbound[73900:0] debug: validator nsec3cfg keysz 1024 mxiter 150
[1619565823] unbound[73900:0] debug: validator nsec3cfg keysz 2048 mxiter 500
[1619565823] unbound[73900:0] debug: validator nsec3cfg keysz 4096 mxiter 2500
[1619565823] unbound[73900:0] notice: init module 1: iterator
[1619565823] unbound[73900:0] debug: target fetch policy for level 0 is 3
[1619565823] unbound[73900:0] debug: target fetch policy for level 1 is 2
[1619565823] unbound[73900:0] debug: target fetch policy for level 2 is 1
[1619565823] unbound[73900:0] debug: target fetch policy for level 3 is 0
[1619565823] unbound[73900:0] debug: target fetch policy for level 4 is 0
[1619565823] unbound[73900:0] debug: donotq: 127.0.0.0/8
[1619565823] unbound[73900:0] debug: donotq: ::1
[1619565823] unbound[73900:0] debug: read zonefile example.zone for example.
[1619565823] unbound[73900:0] debug: auth-zone example. ZONEMD hash is correct
[1619565823] unbound[73900:0] debug: auth zone example. ZONEMD verification successful
...

12

Verisign Public

ZONEMD for the Root Zone

13

Verisign Public

RZERC Recommendations

Earlier this year, ICANN’s Root Zone Evolution Review Committee
(RZERC) made the following recommendations to the ICANN Board
regarding ZONEMD in the root zone:
1. The root zone maintainer and root server operators should verify and

confirm that the addition of a ZONEMD resource record will in no way
negatively impact the distribution of root zone data within the RSS.

2. The DNS and Internet community should be made aware of plans to use
ZONEMD in the root zone, and be given an opportunity to offer feedback.

3. Developers of name server software are encouraged to implement
ZONEMD and consider enabling it by default when the software is
configured to locally serve root zone data.

4. Public Technical Identifiers (PTI) and the RZM should jointly develop a plan
for deploying ZONEMD in the root zone, and make this plan available for
review by RZERC.

14

Source: https://www.icann.org/iana_rzerc_docs/449-rzerc003-adding-zone-data-protections-to-the-root-zone-v-final

Verisign Public

Tentative Root ZONEMD Deployment Plans

• A single ZONEMD record
• Initially with a private-use algorithm?

• Everyone remembers the “DURZ”?

• Then with SHA-512
• Possibly starting as early as December 2021
• ZONEMD RR format or generic / unknown RR format?

15

© 2021 Verisign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and designs are registered or unregistered trademarks of
VeriSign, Inc. and its subsidiaries in the United States and in foreign countries. All other trademarks are property of their respective owners.

