Poison Over Troubled Forwarders: A Cache Poisoning Attack Targeting DNS Forwarding Devices

Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu,

Keyu Man, Shuang Hao, Haixin Duan and Zhiyun Qian

Presenter: Xiang Li Tsinghua University

Internet Access & Common Devices

How does DNS work on these routers and WI-FI networks?

They serve as DNS forwarders

DNS Forwarder

• Devices standing in between stub and recursive resolvers

- E.g., home routers, open Wi-Fi networks
- Gateways of access control
- Load balancers for upstream servers

DNS Forwarder: Prevalent Devices

• Prevalent devices

- IMC '14
 - **32M**, 95% are forwarders
- IMC '15
 - **17.8M**, 76.4% are residential devices
- Enabled by various software and routers
 - BIND, Unbound, Knot Resolver, and PowerDNS
 - TP-Link, D-Link, and Linksys

DNS Forwarder: Prevalent Devices

• Prevalent devices

• Part of the complex DNS infrastructure

Kyle Schomp, Tom Callahan, Michael Rabinovich, Mark Allman. On measuring the client-side DNS infrastructure. IMC '13

DNS Forwarder: Security

• Security status

- Forwarder vs Recursive resolver
 - bailiwick check, DNSSEC validation
- Relies on the integrity of upstream resolvers
- Do not check too much by itself
- E.g., fail to check the src port and TXID (PAM '14)
 - simple cache poisoning attacks
 - DoS attacks

DNS Cache Poisoning Attacks

One of the most influential attacks targeting DNS resolvers

DNS Cache Poisoning Attacks

• Forging a valid DNS response

- Matching the DNS query's metadata
 - Address, Port, DNS transaction ID (TXID), Query name
- Type 1: Forging Attacks
- Type 2: Defragmentation Attacks

DNS Cache Poisoning Attacks: Type 1

• Type 1: Forging Attacks

- **Guessing the metadata**, e.g., TXID, src port
 - e.g., the BIND Birthday Attack, **the Kaminsky Attack**
 - others, e.g.,
 - attack with NAT, DNS proxy attack, sock overloading

• Mitigation

- **randomize**, randomize, randomize (RFC 5452)
- src port, TXID, qname

Do randomization defenses end forging attacks?

Yes or No? Proud or Upset.

E.g., SAD DNS Attack with side-channels

DNS Cache Poisoning Attacks: Type 2

- Type 2: Defragmentation Attacks
 - Circumventing the metadata, e.g., TXID, src port

DNS Cache Poisoning Attacks: Type 2

• Type 2: Defragmentation Attacks

- Forcing a fragmentation
- Lower the MTU \rightarrow difficult now
 - 0.7% Alexa Top 100k domains is willing to reduce the MTU to <
 528 bytes

0.3% of 2M open resolvers can reduce the MTU to < 512 bytes

- Use the DNSSEC records → cannot target arbitrary domains
 - Non-validating recursive resolvers
 - DNSSEC deployment is still low
 - The attack only works for DNSSEC-signed domains

Our New Defragmentation Attack

Targeting DNS forwarders

Threat Model

Attack Workflow

Experiment

Threat Model: Overview

- Defragmentation attacks targeting DNS forwarders
 - **Reliably** force DNS response fragmentation
 - Target arbitrary victim domain names

Threat Model: Overview

• Defragmentation attacks targeting DNS forwarders

- **Reliably** force DNS response fragmentation
- Target arbitrary victim domain names
- **1. Attacker & DNS forwarder locate in the same LAN** (e.g., in open Wi-Fi networks)

LAN

DNS Forwarder

- Г		
		•
- 11		•
- 11		•
11		_
	0	
	U	
- L'	·	

Recursive resolver

Authoritative Server (attacker.com)

2. Use attacker's own domain name and authoritative server

Threat Model: Insight on Forwarder Roles

• Defragmentation attacks targeting DNS forwarders

- **Reliably** force DNS response fragmentation
- Target arbitrary victim domain names

Relies on recursive resolvers Target of cache poisoning

2. Use attacker's own domain name and authoritative server

Motivation

Threat Model

Experiment

Flow of Defragmentation Attack: Step 0&1

• Defragmentation attacks targeting DNS forwarders

Atta	LAN Acker	DNS Forwarder	Recu reso	o o ursive olver	Authoritative Server
	0a. Any query (to recursiv	ve)			(attacker.com)
	Current IPID		0b. Response		
1. Craft spoofed 2nd fragment	Predicted IPID 1. Spoofed 2nd fragment Header victim.com A a.	t.k.r	2nd Fragment cached		

Challenge: guessing the IPID

- No UDP and DNS headers in the 2nd fragment
- IPID Prediction is needed
 - The IPIDs of the 2nd and 1st fragment should agree

• IPID assignment algorithms

- Global IPID Counter
- Random IPID Counter
- Hash-based IPID Counter
 - key: <src IP, dst IP>

increased number: [1, the number of system ticks]

- Predicting the hash-based IPID
 - same "NAT-ed" public src address
 - send the 2nd fragment quick

• Predictable IPID measurement results

- Incremental IPID counter
 - **Open DNS resolvers**: 4.2M
- Hashed-based IPID counter
 - **OS**: Windows 10 (version 1909), ubuntu (5.3.0.29-generic)
 - Public DNS services:
 - Cloudflare, Quad9, Comodo, OpenDNS, Norton

• Other header fields

- Fragment offset
- IP source address
- UDP checksum

Flow of Defragmentation Attack: Step 2

• Defragmentation attacks targeting DNS forwarders

Flow of Defragmentation Attack: Step 3

• Defragmentation attacks targeting DNS forwarders

Forcing a fragmentation of the DNS Response

Via oversized DNS responses

Attacker's Oversized DNS Response

• CNAME chain

• Use dummy **CNAME records** to enlarge attacker's DNS response

1st fragment

a.attacker.com CNAME b.attacker.com

b.attacker.com CNAME c.attacker.com

c.attacker.com CNAME d.attacker.com

•••

x.attacker.com CNAME y.attacker.com

y.attacker.com CNAME z.attacker.com

z.attacker.com A x.x.x.x

> 1,500 Bytes (Ethernet MTU)

Always produce fragments

2nd fragment

Attacker's Oversized DNS Response

CNAME chain

- Use dummy **CNAME records** to enlarge attacker's DNS response Ο
- Use CNAME to point attacker's domain to any victim Ο

Flow of Defragmentation Attack: Step 4

• Defragmentation attacks targeting DNS forwarders

Flow of Defragmentation Attack: Bingo

• Defragmentation attacks targeting DNS forwarders

Conditions of Successful Attacks

Conditions of Successful Attacks: C1

• EDNS(0) support

- Allows transfer of DNS messages > 512 Bytes over UDP
- To force a fragmentation
- Is being increasingly supported by DNS software
 BIND, Knot DNS, Unbound, and PowerDNS
- Is supported by most recursive resolvers

Conditions of Successful Attacks: C2

• DNS caching by record

- ← Caching the answers as a whole
 - a.attacker.com A a.t.k.r
- \circ Caching the answers by record
 - a.attacker.com CNAME b.attacker.com

victim.com A a.t.k.r

C		
	lst fragment	_
	a.attacker.com CNAME b.attacker.com	
/	D.attacker.com CNAME c.attacker.com	
	c.attacker.com CNAME d.attacker.com	
	x.attacker.com CNAME y.attacker.com	
	v.attacker.com CNAME victim.com	
	victim.com A a.t.k.r	
	Specied 2nd fragment	

Conditions of Successful Attacks: others

- No active truncation of DNS response
 - Ensures that the entire oversized response is transfered
- No response verification
 - DNS forwarders rely on upstream resolvers
 - No "re-query" for the aliases

Threat Model

Attack Workflow

Which DNS software is vulnerable?

Vulnerable DNS Software

• Test results

- 2 kinds of popular DNS software are vulnerable
- **dnsmasq** (used by OpenWRT), **Microsoft DNS**
- others
 - DNRD caches DNS responses as a whole
 - BIND, Unbound, Knot, and PowerDNS re-query the CNAME chain

Software	Version	EDNS(0) & No truncation	Cache by Record	No Veri- fication	Vulnerable
dnsmasq MS DNS	2.7.9 2019	\ \ \	\ \	\ \	<i>s</i>

Vulnerable Home Routers

• Test results

- 16 models are tested (by real attacks in controlled environment)
- 8 models are vulnerable
- others
 - either do not support EDNS(0) or truncate the large response

no one re-queries the aliases

Brand	Model	EDNS(0)	No Tru- ncation	Cache by Record	Vulnerable
D-Link	DIR 878		1	\checkmark	 ✓
ASUS	RT-AC66U B1	1	\checkmark	1	1
Linksys	WRT32X	1	\checkmark	1	1
Motorola	M2	1	\checkmark	\checkmark	1
Xiaomi	3G	1	\checkmark	\checkmark	1
GEE	Gee 4 Turbo	1	\checkmark	1	1
Wavlink	A42	1	\checkmark	1	1
Volans	VE984GW+		\checkmark	\checkmark	✓

Real Attacks

• Complex network experiment

- Home router: OpenWRT with dnsmasq
- Client and attacker
 - in the same LAN
 - plus 13 other clients, e.g., mobile phones and tablets
 - 7.95Mbps/753.3Kbps of inbound/outbound traffic
- Upstream recursive resolver: Norton public resolver
- Authoritative resolver
- It takes 58s to complete a successful attack

Real Attacks

• Complex network experiment

- Home router: OpenWRT with dnsmasq
- Client and attacker

Powered by LuCl openwrt-19.07 branch (git-20.029.45734-adbbd5c) / OpenWrt 19.07.1 r10911-c155900f66

How many real-world devices are affected potentially?

Measuring Clients Potentially Under Risk

• Collect vantage points

- Implement measurement code in a network diagnosis tool
- 20K clients, mostly located in China
- Check the forwarder conditions
 - Ethical considerations: no real attack
 - 40% do not support EDNS(0) yet
 - Estimated vulnerable clients: 6.6%

Responsible Disclosure

• Responsible Disclosure

- Submitting reports and connecting via emails
- **ASUS** and **D-Link** release firmware patches

Caching the responses as a whole

- **Linksys** accepts the issue via BugCrowd platform
- **Microsoft** confirms the issue via Microsoft Bounty Program

Threat Model

Attack Workflow

Mitigation

• Mitigation for DNS forwarders

- DNS caching by response (short-term solution)
 - Cache the responses as a whole
- 0x20 encoding on DNS records
 - Encode names and aliases in all records
- Perform response verification
 - **DNSSEC**
 - Re-query all names and aliases
 - Should the forwarder do verification?
 - Lack clear guidelines of DNS forwarders

So, what are DNS forwarders?

What role should they play? What features should be supported?

DNS Forwarder Specifications

• RFC 1034

- No discussion on DNS forwarding
- Now, multiple layers of server
 - stub resolver, **forwarder**, recursive resolver, authoritative resolver
- Different RFCs, different names
 - RFC 2136, 2308, 3597, 5625, 7626, 7871, 8499
- Two definitions of "forwarder"
 - **D1:** Serve as upstream servers of recursive resolvers
 - **D2:** Stand between stub resolvers and recursive resolvers

DNS Forwarder Specifications: D1

• Definition 1

• Serve as upstream servers of recursive resolvers

• Uses

- Be leveraged to access authoritative servers
- Have better Internet connection or bigger cache ability

RFC	Title	Description	
2136	Dynamic Updates in the Domain Name System (DNS UPDATE)	When a zone slave forwards an UPDATE message, enter the role of " forwarding server ".	
2308	Negative Caching of DNS Queries (DNS NCACHE)	a bigger cache which may be shared amongst many resolvers.	
7626	DNS Privacy Considerations	these forwarders are like resolvers.	4

DNS Forwarder Specifications: D2

• Definition 2

• Stand between stub resolvers and recursive resolvers

• Uses

• Take queries from clients, pass the requests on to another server

RFC	Title	Description	
3597	Handling of Unknown DNS Resource Record (RR) Types	forwarders used by the client.	
5625	DNS Proxy Implementation Guidelines	(DNS) proxies are usually simple DNS forwarders , relies o upstream resolver	on an
7871	Client Subnet in DNS Queries	Forwarding Resolvers, Recursive Resolver handles the qu	Jery
8499	DNS Terminology	stand between stub resolvers and recursive servers. 5	50

DNS Forwarder Implementations

• Lack clear guidelines of DNS forwarders

- The term of DNS forwarders is updated by RFC 8499
- There are no implementation details -> **diverse implementations**
- What should a DNS forwarder do
 - How to **handle** DNS responses
 - Whether should they **cache**
 - Whether should they "**re-query**" some responses
- Only RFC 5625: DNS Proxy
 - DNS proxies should be as transparent as possible
 - Forward DNS packets (up to 4,096 octets)

Implementation guidelines of the DNS forwarder are needed.

To guarantee better security

- An attack targeting DNS forwarders
- Affects forwarder implementations extensively
- Call for more attention on DNS forwarder security

Any Questions? zxf19@mails.tsinghua.edu.cn

Poison Over Troubled Forwarders: A Cache Poisoning Attack Targeting DNS Forwarding Devices

Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao, Haixin Duan and Zhiyun Qian

