DNS Cache Poisoning Attack Reloaded: Revolutions with Side Channels

aka SAD DNS

Keyu Man, Zhiyun Qian, Zhongjie Wang,
Xiaofeng Zheng†, Youjun Huang†, Haixin Duan†
Contents

• Background
 • DNS Cache Poisoning
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
DNS Cache Poisoning

Trudy (Off-path)

Resolver

5.6.7.8

bank.com Nameserver (NS)

Alice’s Browser

Trudy

2.2.2.2

6.6.6.6

www.bank.com IP=??

www.bank.com IP=6.6.6.6

www.bank.com IP=6.6.6.6

Cached Wrong record!

www.bank.com IP=6.6.6.6

www.bank.com IP=6.6.6.6

www.bank.com IP=2.2.2.2

www.bank.com IP=6.6.6.6
DNS Cache Poisoning

Resolver

5.6.7.8
Trudy (Off-path)

www.bank.com IP=6.6.6.6

Our Side Channel:

Traditional:

Traditional: $2^{16} \times 2^{16} = 2^{32}$ (Impossible in short time)
Contents

• Background
• Part I: Infer Ephemeral Port
 • Ephemeral Port Type: public-facing vs. private facing
 • Method I: Direct Scan
 • Method II: Side-channel-based Scan
 • Measurements
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Port Inference: Basics

- **Attacker**
 - UDP dport=53
 - UDP dport=67
 - ICMP: 67 isn’t open

- **OS**
- **APP**
- **Resolver**

Packet

Listen on 53

unbound

Port Inference: Ephemeral Port Type

RFC 8085

UDP datagrams may be directly sent and received, without any connection setup. Using the sockets API, applications can receive packets from more than one IP source address on a single UDP socket. Some servers use this to exchange data with more than one remote host through a single UDP socket at the same time. Many applications need to ensure that they receive packets from a particular source address; these applications MUST implement corresponding checks at the application layer or explicitly request that the operating system filter the received packets.
Contents

• Background
• Part I: Infer Ephemeral Port
 • Ephemeral Port Type
 • Method I: Direct Scan
 • Method II: Side-channel-based Scan
 • Measurements
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Port Inference: Direct Scan

• Some DNS software call `bind()` or `sendto()`
 • Unbound, dnsmasq

• Hindrance: ICMP rate limit
 • Per-IP limit: 1 pps* on Linux

• Solution I: **IPv6** to bypass Per-IP limit

• Solution II: No IPv6? Request **IPv4** thru **DHCP**

• Solution III: Still doesn’t work? **Side-channel**-based port scan

*PPS=**P**ackets Per **S**econd
Contents

• Background
• Part I: Infer Ephemeral Port
 • Ephemeral Port Type
 • Method I: Direct Scan
 • Method II: Side-channel-based Scan
 • Measurements
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Port Inference: Private-facing Ports

Attacker

Resolver

Nameserver

DNS Query

(Anonymous Port) 1234->53

UDP dport=1234

ICMP: 1234 isn’t open

UDP dport=1234
Port Inference: IP Spoofing

Attacker 5.6.7.8

Resolver

Nameserver 5.6.7.8

UDP dport=1234

UDP dport=5678

ICMP: 5678 isn’t open
Port Inference:

- ICMP Global Rate Limit:
 - Limit sending rate
 - Shared by all IPs
Port Inference: How It Works

Resolver with **NO** port open

Nameserver

Attacker

Hit 50 closed ports

Counter=50

50 UDP Probes

50 ICMPs

Verification

Spoofed

Normal

Resolver with **ONE** port open

Nameserver

Attacker

Counter=50

Hit 49 closed ports & 1 open port

Counter=50-49=1

50 UDP Probes

49 ICMPs

Verification

ICMP Reply
Contents

• Background
• Part I: Infer Ephemeral Port
 • Ephemeral Port Type
 • Method I: Direct Scan
 • Method II: Side-channel-based Scan
 • Measurements
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Port Inference: Measurements

- Forwarders:

<table>
<thead>
<tr>
<th>Router</th>
<th>ICMP Reply</th>
<th>Global ICMP Rate Limit</th>
<th>Using connect ()</th>
<th>Allow Spoofing Public IP in LAN</th>
<th>Vulnerable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verizon Fios Gateway (G1100)</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
</tr>
<tr>
<td>Xiaomi (R3)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y1</td>
</tr>
<tr>
<td>Huawei A1 (WS826)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N</td>
</tr>
<tr>
<td>Netgear (WNDR3700v4)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y2</td>
</tr>
<tr>
<td>Arris Spectrum Gateway (TR4400)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y1</td>
</tr>
<tr>
<td>TP-Link (Archer C59)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Y1: vulnerable to an insider attack. Y2: vulnerable to an attack requiring collaboration between an insider and outsider.
Port Inference: Measurement

- **Open Resolvers:**
 - **34%** Vulnerable

- **Well-known Public Resolvers:**
 - **12/14** Vulnerable

<table>
<thead>
<tr>
<th>Resolver</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>8.8.8.8</td>
</tr>
<tr>
<td>Cloudflare</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>OpenDNS</td>
<td>208.67.222.222</td>
</tr>
<tr>
<td>Comodo</td>
<td>8.26.56.26</td>
</tr>
<tr>
<td>Dyn</td>
<td>216.146.35.35</td>
</tr>
<tr>
<td>Quad9</td>
<td>9.9.9.9</td>
</tr>
<tr>
<td>AdGuard</td>
<td>176.103.130.130</td>
</tr>
<tr>
<td>CleanBrowsing</td>
<td>185.228.168.168</td>
</tr>
<tr>
<td>Neustar</td>
<td>156.154.70.1</td>
</tr>
<tr>
<td>Yandex</td>
<td>77.88.8.1</td>
</tr>
<tr>
<td>Baidu DNS</td>
<td>180.76.76.76</td>
</tr>
<tr>
<td>114 DNS</td>
<td>114.114.114.114</td>
</tr>
<tr>
<td>Tencent DNS</td>
<td>119.29.29.29</td>
</tr>
<tr>
<td>Ali DNS</td>
<td>223.5.5.5</td>
</tr>
</tbody>
</table>
Contents

• Background
• Overview
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
 • Strategy I: Malicious Name Server
 • Strategy II: Response Rate Limiting
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Extend Attack Window

Client → Resolver → Attacker → Nameserver

Query

Fake Response

Response

Response
Extend Attack Window: Malicious Name Server

- Port open window: 0.1s -> 10s
- **Forwarder** attack only

```
```

<table>
<thead>
<tr>
<th>Answer</th>
<th>www.atkr.com CNAME</th>
<th>www.victim.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.victim.com A</td>
<td>1.2.3.4</td>
<td></td>
</tr>
</tbody>
</table>
Contents

• Background
• Overview
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
 • Strategy I: Malicious Name Server
 • Strategy II: Response Rate Limiting
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Extend Attack Window: Against Resolver

RRL: 18% Deployed
Contents

• Background
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
• Our Attacks
 • Forwarder Attack
 • Resolver Attack
• Defenses
• Conclusion
• Disclosure
Forwarder Attack

• Strategy
 • Port inference: **DHCP** for 240 IPs & scan ports directly
 • Extend port open window: **malicious name server**

• Victim
 • Xiaomi R3
 • Upstream resolver: 1.1.1.1

• Attacker
 • Raspberry Pi, connected to Xiaomi via 2.4GHz Wi-Fi
Forwarder Attack: Results

• Success rate: 20/20

<table>
<thead>
<tr>
<th>Total time</th>
<th>DHCP time</th>
<th>Attack time</th>
<th>DHCP req’d</th>
<th>DHCP get</th>
<th>Port scanned</th>
</tr>
</thead>
<tbody>
<tr>
<td>268s</td>
<td>131s</td>
<td>137s</td>
<td>240</td>
<td>234</td>
<td>28383</td>
</tr>
</tbody>
</table>

Effective port scan speed: $28383 \div 137s = 207 \text{ pps}$
Contents

• Background
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
• Our Attacks
 • Forwarder Attack
 • Resolver Attack
• Defenses
• Conclusion
• Disclosure
Production Resolver Attack

```
$ dig @ test2.test.xiaofengtest.net +timeout=999

; <<< DIG 9.11.5-P4.5.1ubuntu2.1-Ubuntu <<< @ test2.test.xiaofengtest.net +timeout=999
; (1 server found)
; ; global options: +cmd
; ; Got answer:
; ; >>>HEADER<< opcode: QUERY, status: NOERROR, id: 7660
; ; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 2

;; OPT PSEUDOSECTION:
;; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:
test2.test.xiaofengtest.net. IN A

;; ANSWER SECTION:
test2.test.xiaofengtest.net. 300 IN A 1.2.3.4

;; AUTHORITY SECTION:
test2.test.xiaofengtest.net. 3534 IN NS ns.test2.test.xiaofengtest.net.

;; ADDITIONAL SECTION:
ns.test2.test.xiaofengtest.net. 294 IN A 54.177.157.64

;; Query time: 172 msec
;; SERVER: #53( )
;; WHEN: Thu Apr 02 20:54:05 UTC 2020
;; MSG SIZE rcvd: 105
```

20ms delay, 3ms jitter, 0.2% loss

Name Servers (Controlled by us)
Resolver Attack: Results

<table>
<thead>
<tr>
<th>Attack</th>
<th># Back Server</th>
<th># NS</th>
<th>Jitter</th>
<th>Delay</th>
<th>Loss</th>
<th>Total Time</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsinghua</td>
<td>2</td>
<td>2</td>
<td>3ms</td>
<td>20ms</td>
<td>0.2%</td>
<td>15 mins</td>
<td>5/5</td>
</tr>
</tbody>
</table>

Refer to the paper for more detailed results!
Contents

• Background
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Defenses

- DNSSEC
- 0x20 encoding
- DNS cookie
 - Only 5% open resolvers deployed
- Disable ICMP port unreachable
- Randomize ICMP global rate limit
Contents

• Background
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Conclusion

- Side-channel-based UDP port scan
- Make DNS cache poisoning possible again!
- Real-world attacks
Contents

• Background
• Part I: Infer Ephemeral Port
• Part II: Extend Attack Window
• Our Attacks
• Defenses
• Conclusion
• Disclosure
Disclosure
Thank you!

Zhiyun Qian, zhiyunq@cs.ucr.edu

https://github.com/seclab-ucr

@pkqzy888

SAD DNS website:
https://www.cs.ucr.edu/~zhiyunq/SADDNS.html
Practical Concerns

• Concerns on attacking resolver
• Cache Override
 • Inject non-existing NS record
• Multiple NSes
 • Flood all & spoof one to infer port and inject
 • NS pinning (valid on unbound)
• Multiple Backend Resolver
 • Attack them all together
 • Not too many

Infer Ephemeral Port II: Side Channel Scan

• Pinpoint to exact port #: Binary Search

<table>
<thead>
<tr>
<th>dport</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td></td>
</tr>
<tr>
<td>No ICMP</td>
<td></td>
</tr>
<tr>
<td>ICMP</td>
<td></td>
</tr>
<tr>
<td>ICMP</td>
<td></td>
</tr>
<tr>
<td>No ICMP</td>
<td></td>
</tr>
<tr>
<td>ICMP</td>
<td></td>
</tr>
</tbody>
</table>

1 1 1 1 1 1 1 55 56 57 1 1
1 1 1 1 1 1 1 55 56 57 1 1
1 1 1 1 1 1 1 55 56 1 1 1
1 1 1 1 1 1 1 57 1 1 1
1 1 1 1 1 1 1 1 57 1 1 1
Extend Attack Window: Measurement

• Alexa Top 100k Nameservers:
 • **18%** vulnerable (1k & 4k pps)
 • More with potential

Vulnerable Population in Alexa Top 100k

![Graph showing the vulnerable population in Alexa Top 100k nameservers.](image-url)