
Internet Corporation for
Assigned Names & Numbers

P1 — Label Generation Ruleset Tool
(a.k.a. IDN Table Format)

Kim Davies
30 August 2012



What we have today

‣ Many TLD registries use some form of “table” to 
define allowable code points for registration

‣ Simple codepoint eligibility

‣ Calculating variant sets

‣ ICANN (on the IANA website) publishes a “repository” 
of those tables that are public



Problem

‣ No consistent format

‣ To analyse and implement tables for the purposes of 
LGR work, want to be able to implement tools to 
read and parse the tables



Goal

‣ MUST be in a format that can be implemented in a reasonably straightforward manner in software;
‣ The format SHOULD be able to be checked for formatting errors, such that common mistakes can be 

caught;
‣ An IDN Table MUST be able to express the set of valid code points that are allowed for registration 

under a specific zone administrator's policies;
‣ MUST be able to express computed alternatives to a given domain name based on a one-to-one, or 

one-to-many relationship. These computed alternatives are commonly known as "IDN variants";
‣ IDN Variants SHOULD be able to be tagged with specific categories, such that the categories can be 

used to support registry policy (such as whether to list the computed variant in the zone, or to 
merely block it from registration);

‣ IDN Variants MUST be able to stipulated based on contextual information. For example, specific 
variants may only be applicable when they follow another specific code point, or when the code 
point is displayed in a specific presentation form;

‣ The data contained within the table MUST be unambiguous, such that independent implementations 
that utilise the contents will arrive at the same results;

‣ IDN Tables SHOULD be suitable for comparison and re-use, such that one could easily compare the 
contents of two or more to see the differences, to merge them, and so on.

‣ As many existing IDN Tables are practicable SHOULD be able to be migrated to the new format with 
all applicable logic retained.



Non-goals

‣ Stipulate what code points should be listed in an IDN 
Table by a zone administrator. What registration 
policies are used for a particular zone is outside the 
scope of this memo.

‣ Stipulate what a consumer of an IDN Table must do 
when they determine a particular domain is valid or 
invalid; or arrive at a set of computed IDN variants. 
IDN Tables are only used to describe rules for 
computing code points, but does not prescribe how 
registries and other parties utilise them.



Current status

‣ Internet Draft first published earlier this year

‣ http://tools.ietf.org/html/draft-davies-idntables

‣ Good feedback, mostly format nits, some Arabic 
feedback.

‣ Partially complete implementation created

‣ github.com/kjd/idntables

‣ Seeking more feedback







$	
  python
Python	
  2.7.2	
  (default,	
  Jun	
  20	
  2012,	
  16:23:33)	
  
[GCC	
  4.2.1	
  Compatible	
  Apple	
  Clang	
  4.0	
  (tags/Apple/clang-­‐418.0.60)]	
  on	
  darwin
Type	
  "help",	
  "copyright",	
  "credits"	
  or	
  "license"	
  for	
  more	
  information.
>>>	
  from	
  idntables	
  import	
  *
>>>	
  greek	
  =	
  IDNTable("eu_Grek_1.0.xml")
>>>	
  len(greek)
35
>>>	
  chinese	
  =	
  IDNTable("cn_zh-­‐CN_4.0.xml")
>>>	
  len(chinese)
19556
>>>	
  u"测试"	
  in	
  chinese
True
>>>	
  u"测试"	
  in	
  greek
False
>>>	
  u"δοκιμή"	
  in	
  greek
True
>>>	
  for	
  variant	
  in	
  chinese.variants(u"测试"):
...	
  	
  	
  	
  	
  print	
  variant,	
  variant.ulabel
...	
  
xn-­‐-­‐0zwm56d	
  测试
xn-­‐-­‐0zww43d	
  测試
xn-­‐-­‐g6ws64d	
  測试
xn-­‐-­‐g6w251d	
  測試



Current known issues/feature requests

‣ http://github.com/kjd/idntables/issues

http://github.com/kjd/idntables/issues
http://github.com/kjd/idntables/issues


Future

‣ Wrap this up this year, unless significant new 
requirements are identified

‣ In tandem, release proof-of-concept code that works 
with it

‣ Longer term: convert existing IANA registry to use 
format, automated posting with validation?

‣ Would this be used as the basis for identifying 
variants in client/server software?


