DNSSEC 101
6 March 2012
richard.lamb@icann.org
The Internet’s Phone Book – Domain Name System (DNS)

www.majorbank.se =? 1.2.3.4

Get page
Login page
Username / Password
Account Data

DNS Resolver

DNS Server

www.majorbank.se = 1.2.3.4

ISP
Majorbank (Registrant)

DNS Hierarchy

root

se
com

majorbank.se

www.majorbank.se
Caching Responses for Efficiency

www.majorbank.se = 1.2.3.4

DNS Resolver

Get page
Login page

Username / Password
Account Data

webserver
www @ 1.2.3.4
The Problem: DNS Cache Poisoning Attack

www.majorbank.se = 1.2.3.4

DNS Resolver

DNS Server

Get page
Login page
Username / Password
Error

Attacker
www.majorbank.se = 5.6.7.8

Attacker webserver
www @ 5.6.7.8

Password database
Argghhh! Now all ISP customers get sent to attacker.

www.majorbank.se = 1.2.3.4

DNS Resolver

Attacker webserver
www @ 5.6.7.8

Password database

Username / Password
Get page
Login page
Error

5
Securing The Phone Book – DNS Security Extensions (DNSSEC)

www.majorbank.se = 1.2.3.4

DNS Resolver with DNSSEC

DNS Server with DNSSEC

Attacker’s record does not validate – drop it

www.majorbank.se = 1.2.3.4

Attacker

webserver

www.majorbank.se = 5.6.7.8

Get page
Login page

Username / Password
Account Data
Resolver only caches validated records

www.majorbank.se = 1.2.3.4

DNS Resolver with DNSSEC

Get page
Login page
Username / Password
Account Data

webserver
www @ 1.2.3.4

DNS Server with DNSSEC
History

- DNS developed: 1983.
- Discovered vulnerability: 1995
- Triggered 15+ years DNSSEC work in IETF
- 2007 Some ccTLDs have deployed DNSSEC.
- Community presses ICANN to deploy DNSSEC at root
- Aug 2008 Dan Kaminsky reveals DNS vulnerability shortcut
- Root signed June 2010 with direct international participation
- Nov 2011 report: DNSChanger/Ghost Click: 4M PCs across 100 countries suffer redirection. Large scale Brazilian ISP DNS poisoning attack
- Recognition of global PKI spurs development of innovative security solutions beyond DNS.
Passed the point of no return
Deployed on 84/313 top level domains (e.g., .se, .com, 台灣 ...) and the root.
84% of domain names can have DNSSEC deployed on them.
Large ISP has turned DNSSEC “on”*.
Supported by most DNS implementations.
But deployed on < 1% 2nd level domains (e.g., paypal.com).

*10Jan12 17.8 M COMCAST Internet customers. Other ISPs include Vodafone, Telefonica CZ
How it Works

- DNSSEC uses public key cryptography where the private half of keys are used to create digital signatures for records and the public halves used to verify that they have not been modified.
- The Zone Signing Key (ZSK) public–private key pair is used to sign each record of a zone file, i.e., web server IP address, mail server, etc.
- The Key Signing Key (KSK) pair is used to sign the ZSK and KSK itself.
- All someone needs is the public KSK half to validate all records in the zone.
- By having each zone sign the KSK of its subordinate zone, a chain of trust is created from registrant to ISP/end user.
Trust us with your Money Bank (Registrant)

www.mybank.se
IP address = 192.101.186.8

Signature of mybank.se-ZSK1234
mybank.se ZSK signature
6 march 2012

Date
Trust us with your Money Bank
(Registrant)

mybank.se ZSK = 1234
mybank.se KSK = 5678

Signature of mybank.se-KSK5678
mybank.se KSK signature
6 march 2012

Date
Trust us, we are Swedish (Registry)

mybank.se KSK = 5678

Signature of se-ZSK9012

se ZSK signature

1 march 2012

Date
se ZSK = 9012
se KSK = 3456

Signature of se-KSK3456

se KSK signature
1 march 2012

Date
Multi-stakeholder Root

se KSK = 3456

Signature of root-ZSK7890

root ZSK signature

28 February 2012

Date
Multi-stakeholder Root

root ZSK = 7890
root KSK = 1903

Signature of root-KSK1903

root KSK signature

2 February 2012

Date
End User Trusted Operating System or ISP

root KSK = 1903

O/S Vendor Signature

O/S Vendor Signature

1 January 2012

Date
Roles and responsibilities at the registry, registrar, registrant

- Registrant is responsible for generating, signing their records with, and publishing KSK and ZSK.
- Registrar manages DS (derived from KSK) record at the Registry on behalf of the Registrant.
- Registry generates, signs Registrant DS records with, and publishes its own KSK and ZSK.
- The root generates, signs Registry DS (derived from KSK) records with, and publishes its own KSK and ZSK.
- ISP/End User uses a copy of the public half of the root KSK above and uses it to recursively validate and cache responses on behalf of end user DNS lookup requests.

Registrant ➔ Registrar ➔ Registry ➔ Root ➔ ISP ➔ End User
Walkthrough Typical Example

1. Registrant goes to Registrar to get domain name.
2. Registrant selects Registrar provided DNS hosting and DNSSEC signing services.
3. On behalf of Registrant, Registrar generates KSK and ZSK and submits KSK (DS records) to Registry.
4. Registry automatically signs DS record with Registry’s ZSK. Registry KSK/DS has previously been incorporated into the root and signed by root ZSK.
5. Registrant edits DNS records on Registrar (www, etc) and Registrar automatically signs records with ZSK.
6. ISP follows the chain of signatures to validate DNSSEC signed DNS records and only sends valid entries to end users.
Common Issues (but all getting better)

- Expiring signatures: monitoring, automation
- Complexity: experience, automation, training
- High equipment cost: $20K→$5
- Security and Trust: multi-person access, transparency (lessons learned from CAs)
- Lack of Registrar and ISP support: Raise registrant and end user awareness
- Random number generation: careful consideration, standards

```c
int getRandomNumber()
{
    return 4;  // chosen by fair dice roll.
    // guaranteed to be random.
}
```
Links

- IETF RFCs
 - RFC 4033 DNS Security Introduction and Requirements
 - RFC 4034 Resource Records for the DNS Security Extensions
 - RFC 4035 Protocol Modifications for the DNS Security Extensions
- ISOC Deploy360 Program
 http://www.internetsociety.org/deploy360/dnssec/
- DNSSEC Deployment Initiative
 http://dnssec-deployment.org/
- Contact ICANN if interested in training
But wait, there is more..

- **DANE**
 - Improved Web TLS for all
 - Email S/MIME for all

- **Other...**
 - SSH, IPSEC, VoIP
 - Digital identity
 - Other content (e.g. configurations)
 - Global PKI
DNS is a part of all ecosystems

Smart Electrical Grid

Certificate Information

This certificate is intended for the following purpose(s):

- Protects e-mail messages
- Proves your identity to a remote computer
Summary

- DNSSEC is the biggest improvement to the Internet’s core infrastructure in over 20 years.
- Deploying DNSSEC need not be complicated or costly.
- DNSSEC does not solve all the ills of the Internet but can become a powerful tool in improving security.
- DNSSEC is a cross-organizational and trans-national platform for cyber security innovation and international cooperation.
- In order to realize the full benefits of DNSSEC, greater end user and registrant awareness is needed to drive a virtuous cycle of trustworthy deployment.
Thank You