Extended Error Reporting

Reporting errors to where it may be fixed

Roy Arends
Principal Research Scientist, ICANN's Office of the CTO

ICANN DNS Symposium, 16 November 2022

How it started

.UK ZSK rollover appears to have gone wrong, and we need to restart caches to flush out the old ZSK :(#fail #dnssec

8:25 PM · Sep 11, 2010 · Twitter Web Client

Introduction

- Friday, September 10th, 2010 19:38:11
 - The main DNSSEC signing system suffered a kernel panic
 - Failover to the secondary system lead to a signed zone with an old ZSK
 - Validates fine, since the chain of trust was completely intact
 - Unless you use a previously cached keyset, which had a different (newer) ZSK
 - Failure reports on twitter alerted Nominet about the issue

The problem

- DNS problems are not obvious to the end user
- DNS problems observed at a resolver do not automatically get reported to the domain holder
- Real world, risk free testing with DNSSEC deployment is not possible.

First problem

- DNS failures are not obvious. It often manifests in the form of
 - o The Internet is offline!!1!!one?!
 - Or "SERVFAIL" at best
- SERVFAIL hides
 - Lame delegations, DNSSEC validation failures, etc
- This lead to the creation of RFC8914
 - Extended DNS Errors

RFC 8914 (October 2020)

Method to return additional information about the cause of DNS errors.

```
$ dig @1.1.1.1 dnssec-failed.org
; <<>> DiG 9 <<>> @1.1.1.1 dnssec-failed.org
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: SERVFAIL, id: 41151
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 1
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 1232
; EDE: 9 (DNSKEY Missing): (no SEP matching the DS found for dnssec-failed.org.)
;; QUESTION SECTION:
;dnssec-failed.org.
                         IN A
;; Query time: 1 msec
;; SERVER: 1.1.1.1#53(1.1.1.1)
;; MSG SIZE rcvd: 103
```


RFC 8914 (October 2020)

INFO-CODE	Purpose 🖫	Reference 🗵
0	Other Error	[RFC8914, Section 4.1]
1	Unsupported DNSKEY Algorithm	[RFC8914, Section 4.2]
2	Unsupported DS Digest Type	[RFC8914, Section 4.3]
3	Stale Answer	[RFC8914, Section 4.4][RFC8767]
4	Forged Answer	[RFC8914, Section 4.5]
5	DNSSEC Indeterminate	[RFC8914, Section 4.6]
6	DNSSEC Bogus	[RFC8914, Section 4.7]
7	Signature Expired	[RFC8914, Section 4.8]
8	Signature Not Yet Valid	[RFC8914, Section 4.9]
9	DNSKEY Missing	[RFC8914, Section 4.10]
10	RRSIGs Missing	[RFC8914, Section 4.11]
11	No Zone Key Bit Set	[RFC8914, Section 4.12]
12	NSEC Missing	[RFC8914, Section 4.13]
13	Cached Error	[RFC8914, Section 4.14]
14	Not Ready	[RFC8914, Section 4.15]
15	Blocked	[RFC8914, Section 4.16]
16	Censored	[RFC8914, Section 4.17]
17	Filtered	[RFC8914, Section 4.18]
18	Prohibited	[RFC8914, Section 4.19]
19	Stale NXDomain Answer	[RFC8914, Section 4.20]
20	Not Authoritative	[RFC8914, Section 4.21]
21	Not Supported	[RFC8914, Section 4.22]
22	No Reachable Authority	[RFC8914, Section 4.23]
23	Network Error	[RFC8914, Section 4.24]
24	Invalid Data	[RFC8914, Section 4.25]
25	Signature Expired before Valid	[https://github.com/NLnetLabs/unbound/pull/604#discussion r802678343][Willem Toorop]
26	Too Early	[RFC9250]
27	Unsupported NSEC3 Iterations Value	[RFC9276]
28-49151	Unassigned	
49152-65535	Reserved for Private Use	[RFC8914, Section 5.2]

Second problem

- Failures do not automatically reach the place where they can be fixed
- Solution is straightforward:
 - Domain owner publishes a place where to report errors
 - Resolver sends error report to domain owner

Similar to what DMARC does for SPF/DKIM for mail.

DNS-Error Reporting draft draft-ietf-dnsop-dns-error-reporting

- Describes a method that lets resolvers signal errors back to the owner of a domain.
- The intent is to help domain owners and authoritative server operators detect misconfigurations earlier.
- Recent errors are a good example of the issues that can be reported
 - Failures due to DS records with different digests.
 - NSEC3 iterations higher than RFC5155 recommended CAP
 - DNSSEC configuration issues:
 - .beauty, .llp, .unicom, .firestone, etc etc
 - cdc.gov, caltech.edu, time.nist.gov, etc etc

How does it work?

- Client (a validating resolver) indicates support for DNS Error Reporting.
- Authoritative server can then add EDNS0 option to a response, containing a reporting agent domain, say "reporting-agent.example"
- When there is an error, the resolver prepends the extended error code (as a label) and the query type to the erroneous qname, and encapsulates it with an _er label:
 - Example: er.7.1.broken.test. er
- Resolver appends the reporting agent domain to the erroneous qname.
 - Example: _er.7.1.broken.test._er.reporting-agent.example
- Resolver sends the query, which will end up at the reporting agent domain.
- The response can be nicely cached to avoid too many queries.

How is it going?

- This draft was first communicated to several DNS software development teams to get early feedback, which was overall positive.
- IETF hackathon resulted in several client and server-side implementations.
- The DPRIVE Working Group has proposed using DNS records for discovery of whether an authoritative server offers DNS over encrypted transport.
- In such an environment, it would be useful for a resolver to be able to report to an authoritative server if such discovery records are in error.

The third problem

- Real world, risk free testing with DNSSEC deployment is not possible.
 - A lab environment is not the real world.
 - Using a different domain name for testing won't be used the same as your domain.
 - Environments change
 - Cryptographic Algorithms evolve
 - Keys need to be rolled
- What if?

Risk free, near real world testing

- Dry-run DNSSEC is a method whereby
 - All normal DNSSEC processing happens,
 - Except, in a case of an error, no servfail, just pretend DNSSEC was off, i.e. no impact to the user.
 - Error reporting, using the previously discussed method, will show if DNSSEC deployment will be successful.
 - This is the idea that is currently proposed in draft-yorgos-dnsop-dry-run-dnssec
 - Signalling dry-run-dnssec is still being discussed.

Engage with ICANN

Thank You and Questions

Visit us at icann.org
Email: roy.arends@icann.org

@icann

facebook.com/icannorg

youtube.com/icannnews

flickr.com/icann

linkedin/company/icann

soundcloud/icann

instagram.com/icannorg

