ICANN Accra Meeting

Orientation Workshop
11 March 2002
8:00-9:00am

Andrew McLaughlin
Vice President and Policy Guy
ICANN: The Basic Idea

ICANN =
An Experiment in
Technical Self-Management
by the global Internet community
ICANN: The Basic Bargain

ICANN =

Internationalization
of Policy & Management Functions
for DNS and IP Addressing systems

+

Private Sector
(non-governmental) Management
What does ICANN do?

Coordinates policies relating to the unique assignment of:

- Internet domain names
- Numerical IP Addresses
- Protocol Port and Parameter Numbers

Coordinates the DNS Root Server System
- through Root Server System Advisory Committee
Says *The Economist*:

- “ICANN is in many ways a completely new institutional animal.”
- “It is a hybrid between an online community and a real-world governance structure, an untested combination.”
- “It is also a new type of international organisation: an industry trying to regulate part of itself, across the globe, with little or no input from national governments.”

(10 June 2000)
Domain names & IP addresses

- Domain names are the familiar, easy-to-remember names for computers on the Internet
 - e.g., amazon.com, icann.org, nic.org.gh

- Domain names correlate to Internet Protocol numbers (IP numbers) (e.g., 98.37.241.130) that serve as routing addresses on the Internet

- The domain name system (DNS) translates domain names into IP numbers needed for routing packets of information over the Internet
Types of Internet Domains

- **Generic Top Level Domains (gTLDs)**
 - `<.com>`, `<.net>`, `<.org>` open to all persons and entities on a global basis
 - `<.int>` for international treaty organizations
 - `<.arpa>` for Internet Infrastructure purposes
 - `<.gov>`, `<.mil>` for U.S. government, military
 - `<.edu>` for US universities

- **New**: `<.info>`, `<.biz>`, `<.name>`, `<.areo>`, `<.coop>`, `<.museum>`, `<.pro>`
More Types of Internet Domains

- Country Code Top Level Domains (ccTLDs)
 - .gh, .hk, .jp, .ca, .br, .de, .tv, .cc . . .
 - Imprecise name: ccTLD includes countries and geographically distinct territories
 - Derived from ISO 3166-1 list
 - Key feature: Local Internet community decides
 - Registration requirements vary by domain:
 - Residency requirement
 - Price (or no charge)
 - Ability to transfer
 - Dispute resolution policy
Basic DNS Registry Structure

Example: <.com>

ICANN
(= overalll coordinator)

Registry
(= authoritative database of domain names and corresponding IP addresses)

Shared Registry System (SRS)

Registrars
(= interact with customers/registrants; handle billing; place data in registry database; provide WHOIS service)

Registrars A, B, C

Registrants
(= domain name holders)
List of the Root Servers

<table>
<thead>
<tr>
<th>name</th>
<th>org</th>
<th>city</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NSI</td>
<td>Herndon, VA, US</td>
</tr>
<tr>
<td>b</td>
<td>USC-ISI</td>
<td>Marina del Rey, CA, US</td>
</tr>
<tr>
<td>c</td>
<td>PSInet</td>
<td>Herndon, VA, US</td>
</tr>
<tr>
<td>d</td>
<td>U of Maryland</td>
<td>College Park, MD, US</td>
</tr>
<tr>
<td>e</td>
<td>NASA</td>
<td>Mt View, CA, US</td>
</tr>
<tr>
<td>f</td>
<td>Internet Software C.</td>
<td>Palo Alto, CA, US</td>
</tr>
<tr>
<td>g</td>
<td>DISA</td>
<td>Vienna, VA, US</td>
</tr>
<tr>
<td>h</td>
<td>ARL</td>
<td>Aberdeen, MD, US</td>
</tr>
<tr>
<td>i</td>
<td>NORDUnet</td>
<td>Stockholm, SE</td>
</tr>
<tr>
<td>j</td>
<td>NSI (TBD)</td>
<td>Herndon, VA, US</td>
</tr>
<tr>
<td>k</td>
<td>RIPE</td>
<td>London, UK</td>
</tr>
<tr>
<td>l</td>
<td>ICANN</td>
<td>Marina del Rey, CA, US</td>
</tr>
<tr>
<td>m</td>
<td>WIDE</td>
<td>Tokyo, JP</td>
</tr>
</tbody>
</table>
Map of the Root Servers
Root server architecture of today

- Change decision
 - ICANN/IANA
- Verification/approval
 - US Department of Commerce
- Update of the zone file:
 - Zone file management (currently, via A)
 - Synchronized with the database
- Distribution of the zone information
 - To the rest of root servers
Internet Addressing - IPv4

- IPv4 = 32 bits
 - Example: <192.34.0.64>
- Initially, 256 networks ... then mix of:
 - Class A (128 with 16 M hosts)
 - Class B (16,384 with 65K hosts)
 - Class C (2M with 256 hosts)
- Now, Classless Inter-Domain addresses
 - Theoretically, up to 4 Billion hosts, hundreds of thousands of networks
Next Generation Internet - IPv6

- IPv6 = 128 bits of addressing
- Theoretically, 10^{38} hosts
- Significant transition effort needed
 - (Sort of like changing engines on the aircraft while in flight)
- IANA officially announced first allocations to RIRs (July 14, 1999)
Regional Internet Registries (RIR)

• **ARIN**
 – North America
 – Latin America
 – Caribbean Islands
 – Sub-Saharan Africa

• **RIPE NCC**
 – Europe
 – Middle East
 – North Africa
 – Parts of Asia

• **APNIC**
 – Most of Asia
 – Australia/New Zealand
 – Pacific Islands
Emerging RIRs

AfriNIC - Africa

LACNIC - Latin America/Caribbean
Most Internet DNS and IP Address coordination functions performed by, or on behalf of, the US government:

- **Defense Advanced Research Projects Agency (DARPA)**
 - Stanford Research Institute (SRI)
 - Information Sciences Institute (ISI) of University of Southern California
- **National Science Foundation (NSF)**
 - IBM, MCI, and Merit
 - AT&T, General Atomics, Network Solutions, Inc. (NSI)
- **National Aeronautics and Space Administration (NASA)**
- **US Department of Energy**
IANA

- “Internet Assigned Numbers Authority”
- A set of technical management functions (root management; IP address bloc allocations) previously performed by the Information Sciences Institute (ISI) at the University of Southern California, under a contract with the U.S. Government
- Also: Protocol parameter and port number assignment functions defined by the Internet Engineering Task Force (IETF)
- Now performed by ICANN
IANA

Jon Postel
1943-1998
Need for Change

- **Globalization** of Internet
- **Commercialization** of Internet
- Need for **accountability**
- Need for more **formalized management structure**
- Dissatisfaction with **lack of competition**
- Trademark/domain name **conflicts**
USG White Paper: new DNS policy & management structure must promote 4 goals:

- Stability
- Competition
- Private, bottom-up coordination
- Representation
White Paper Implementation

- Internet community to form non-profit corporation meeting White Paper’s 4 criteria
- US Government (through Commerce Department) to transition centralized coordination functions
- Amendment of Network Solutions agreement to require competitive registrars in gTLD registries
- Request to WIPO to study & recommend solutions for trademark/domain-name conflicts
Status of Transition from USG

- **1998**
 - November - ICANN recognized in MoU

- **1999**
 - June - Cooperative agreement among ICANN, US Government, root server operators
 - November - ICANN and Network Solutions (NSI) sign gTLD registry and registrar agreements; USG transfers root authority over gTLDs to ICANN

- **2000**
 - February - Contract with US Government to complete transfer of IANA functions
 - November - Selection of 7 new Top-Level Domains

- **2001**
 - January - Transfer of InterNIC functions from NSI to ICANN
 - September – Agreement with .au Registry

- **2002**
 - February – Agreement with .jp Registry
ICANN and ccTLDs

- Basic organizing principle: Local Internet communities make decisions about country code TLD Registries (ccTLDs)

- ICANN’s role
 - Very hands-off on policy
 - Basic responsibility to delegate ccTLD so as to serve the interests of the local and global Internet communities
 - Coordinate stable root server system

- ccTLD managers’ role
 - Technically competent registry and nameserver operations
 - Commitment to administer as trustee for the local community (local laws, culture, customs, preferences, etc.)

- Local government’s role
 - Depends on the local situation
ICANN and Global TLDs

• For the global TLDs (such as .com, .net, .org), ICANN serves as the vehicle for consensus policy development

• Examples of policies:
 – Competitive registrars
 – Uniform Dispute Resolution Policy
 – Data Escrow
 – Redemption Period for Deleted Names (?)
New Top-Level Domains

- First group chosen in November 2000
 - Global Open: <.info>, <.biz>
 - Individuals: <.name>, <.pro>
 - Specialized: <.museum>, <.aero>, <.coop>

- Proof of Concept - Launch with caution, observe carefully, learn from experience
 - Selection process was transparent & predictable

- If these are successful, there will be future rounds
 - Goal: Less burdensome, less expensive, more objective

- Biggest challenge: Launch phase
 - Intellectual Property & cybersquatting fears
 - Opening day rush; fairness to everyone
Top Policy Objectives for Year 2002

• ICANN Reform!
 – DNSO Restructuring

• Progress toward agreements:
 – ccTLD registry agreements
 – IP Address registry agreements
 – Root server operator agreements

• Mechanism(s) for Individual Participation
• gTLD Policies
 – UDRP Review
 – Whois Requirements
 – Handling of deleted domain names
Structure of ICANN
ICANN Board of Directors

At Large Directors:
• Karl Auerbach (USA)
• Ivan Moura Campos (Brazil)
• Frank Fitzsimmons (USA)
• Masanobu Katoh (Japan)
• Hans Kraaijenbrink (Netherlands)
• Andy Mueller-Maguhn (Germany)
• Jun Murai (Japan)
• Nii Quaynor (Ghana)
• Linda S. Wilson (USA)

ASO Directors:
• Rob Blokzijl (Netherlands)
• Ken Fockler (Canada)
• Sang-Hyon Kyong (South Korea)

DNSO Directors:
• Amadeu Abril i Abril (Spain)
• Jonathan Cohen (Canada)
• Alejandro Pisanty (Mexico)

PSO Directors:
• Helmut Schink (Germany)
• Vint Cerf (USA) - Chairman
• Phil Davidson (U.K.)
ICANN Staff

New Model: Lightweight
(minimal staff = minimal bureaucracy)

Current Staff:

- President and CEO (Dr. Stuart Lynn)
- V.P./General Counsel (Louis Touton)
- V.P./Chief Policy Officer (Andrew McLaughlin)
- Counsel for Int’l Legal Affairs (Theresa Swinehart)
- C.F.O. (Diane Schroeder)
- Manager, Technical Operations (John Crain)
- Manager, Technical Systems (Kent Crispin)
- Director of Communications (Mary Hewitt)
- Registrar Liaison (Dan Halloran & Ellen Sondheim)
- ccTLD Liaison (Herbert Vitzthum)
- IANA staff (Michelle Schipper, Bill Huang)
- Network Administrator (Jim Villaruz)
Funding

- ICANN Budget = ~4.5 million US
- Sources of funding: Registry & Registrar agreements
 - gTLD Registries (com, net, org, info, biz, etc.)
 - gTLD Registrars
 - ccTLD Registries (few agreements yet)
 - Regional Internet Registries (when agreements finalized)
At Large Study

• Charge to At Large Study Committee: Study the process, draw lessons, redesign for the future
 – Chair of study committee: Hon. Carl Bildt (Sweden)
 – Vice-chairs: Pindar Wong (Hong Kong S.A.R., China) and Charles Costello (USA, Carter Center)
ICANN = CyberGovernment?

A: NO!

ICANN has no inherent coercive power, only the ability to enter into contractual relationships through a process of consensus & consent.

Objectives: Network of agreements, that formalize and make transparent.

ICANN is not a substitute for the powers of governments (i.e., courts and laws).
ICANN = CyberGovernment?

- **No:** ICANN *coordinates* unique identifiers.
- **But:** technical coordination of unique values sometimes touches on non-technical policy interests:
 - Data privacy protection
 - (WHOIS database)
 - Intellectual property/trademark law
 - (UDRP)
 - Competition law
 - (Registrar accreditation for .com, .net, .org)
What ICANN doesn’t do

• Network security
• Financial transactions
• Data Privacy
• Internet Content
 – Pornography; hate speech
 – Copyright violations
 – Deceptive business practices / consumer protection
• Multi-national commercial disputes
• Definition of technical standards
 – Network surveillance and traceability
• Internet gambling
• Spam
What ICANN is NOT

- Technical Standard-Setting Body
- Internet Police Force
- Consumer Protection Agency
- Economic Development Agency
- Legislature or Court
What ICANN does do:

• Coordinate the Internet’s systems of unique identifiers
 – And address directly related policy issues

• Set registry policies for the gTLDs
Lessons from the Experiment?

- Private-sector self-management is possible, if narrowly chartered

- Global consensus on policy is difficult to define; even harder to achieve
 - Consensus is a tradition in the technical community in which ICANN is rooted, because you can test solutions & refer to objective data
 - Consensus on policy questions can be elusive, because it depends upon subjective values
Message to You:

(and to all Internet communities)

GET INVOLVED!!!

Consensus means you have to show up to be heard.

www.icann.org
For Further Information:

Andrew McLaughlin
<ajm@icann.org>

Louis Touton
<touton@icann.org>

http://www.icann.org