Briefing on
Dec 2018 - Jan 2019
DNS/IMAP Prepositioning Attacks

Saturday May 11, 2019
ICANN DNS Symposium

Bill Woodcock
Executive Director
Packet Clearing House
References

Cisco/Talos:
https://blog.talosintelligence.com/2019/04/seaturtle.html

DHS:
https://www.us-cert.gov/ncas/current-activity/2019/01/10/DNS-Infrastructure-Hijacking-Campaign
https://cyber.dhs.gov/ed/19-01/

GCHQ:

Mandiant/Fireeye:

Ars Tech:
https://arstechnica.com/information-technology/2019/01/a-dns-hijacking-wave-is-targeting-companies-at-an-almost-unprecedented-scale/
Targets

- Many national governments, mostly middle-eastern
- A few Internet critical infrastructure operators (IXPs and root & TLD nameservice)
- All military cyber-offense prepositioning
Timing

• Coincides with end-of-year shutdown of Middle Eastern governments for expat holiday travel.
• USG shutdown was coincidental.
• Timing was very effective
Structure of the Attack

DNS Hijack
- Registrar EPP credential found in spoils of an attack against a third party
- Registrar - Registrar Wholesaler - Registry
 - No due-diligence to determine whether change was authorized
- NS (but not DS) records changed four one-hour periods Dec 13, 14, and Jan 2
- Authoritative DNS proxy gives false answers to Comodo
- Other queries proxied using answers obtained from 8.8.8.8
- Comodo “domain validation” SSL certificate issued
 - No due-diligence to determine whether change was authorized
 - (priors used Let’s Encrypt, which does do DNSSEC validation)

IMAP Hijack
- SSL cert put into IMAP proxying infrastructure
- IMAP logins intercepted, credentials harvested
 - SMTP traffic in/out collaterally intercepted during hijack periods
- Mailboxes, vCards, vCals exfiltrated
Warning Signs

- DNSSEC-validating IMAP clients were unable to connect to mail server during brief hijack periods.

- Proxied inbound SMTP all came from a single source during the hijack windows, which meant that all inbound spam was also coming from single source, so that source immediately got graylisted and shut off.

- Hypothetically, inbound queries to authoritative DNS servers should have been more geographically concentrated during the hijack periods, but this didn’t stand out notably in the data.
Defenses

Actual:
- DNSSEC signing / DNSSEC validation
- Walking NS/DS delegation from the root
- Registry Lock
- IMAP server not reachable from the Internet
- More structural separation between services

Hypothetical:
- Cert pinning
- MDM to lock recursive resolver
- DANE authentication of the IMAP server
New Tool

Walking NS/DS delegation from the root
New Tool

Walking NS/DS delegation from the root

We began visually graphing DNS dependencies for domains we’re responsible for, and it turns out that the status-quo for nearly all domains is very, very bad.

Anything critical needs to be registrar locked, registry locked, and DNSSEC signed, and that needs to be true for every dependency. Then you need to actually DNSSEC validate (ideally client-side) and use DANE to authenticate servers, not CA certs.
Thanks, and Questions?

Bill Woodcock
Executive Director
Packet Clearing House
woody@pch.net
+1 415 831 3103