

DNS Anycast Operation of .JP

ICANN ccNSO @ Vancouver
30 Nov. 2005
Shinta Sato <shinta @ jprs.co.jp>
JPRS

Agenda

- Background
- Motivations
- .JP Anycast Overview
- Anycast management

Background

- IP anycast is...
 - A technology to share a single IP address in multiple servers
 - IGP anycast for inside AS
 - BGP anycast for outside AS
 - DNS service is one of the effective thing to introduce IP anycast
 - 1 packet udp transaction for both query and response (Response packet may fragment in EDNS0, but still no problem)
 - very short tcp session
 - IP anycast technology is now being deployed in authoritative name servers
 - Root servers (C, F, I, J, K, M)
 - Some TLD servers (.JP, .MX, .DE etc.)

BGP Anycast Overview

IGP Anycast Overview

Motivations

- Common motivations for using DNS anycast are,
 - Localize the DoS attack damages
 - Provide nameservers all over the world
 - IPv6 deployment
 - Simple maintenance and recovery

Localize the DoS attack damages

- IP Anycast can localize the DoS attack damages to the single node.
 - Other nodes will not be affected from the DoS attack
 - Only the nearest nodes from the DoS attacker will be damaged
 - In the DDoS case, if the attackers are gathering in the similar network, affects will be localized too.

Provide nameservers all over the world

- Placing more nameservers is one of the solutions to increase the stability of the DNS
- IP anycast can help to plan the placement of secondary servers
 - Adding a new anycast node improves the accessibility of the users
 - Users access only the nearest node

IPv6 deployment

- Adding IPv6 glue data in the higher level zone decrease the limit number of NS in less than 13
 - Number of NS is limited by the DNS response packet size of 512 octets
 - Serving AAAA (IPv6) information in the glue record require more data size in the additional section than A (IPv4) only

Simple maintenance and recovery

- IGP anycast can simplify server maintenance
 - Operator can stop individual server without outage of the service
- BGP anycast can simplify maintenance of the whole site
 - Operator can shutdown the BGP peer without outage of the service
 - Useful in the case of network troubles
- Able to rebuild the DNS node without thinking of other infrastructures placed in the same network

The current situation of .JP

- JP DNS servers:
 - 5 NSes
 - {a,b,d,e,f}.dns.jp
 - c.dns.jphas retired in Mar. 2005
 - Operated by 5 different organizations, with responsibility of JPRS
 - All organizations own their networks by their own AS numbers
 - Hold numbers of zones
 - .JP ccTLD zones (1 TLD and 63 SLDs)
 - 769,445 domains (1 Nov. 2005)
 - Also serve 339 of in-addr.arpa zones for JPNIC (NIR)

Introducing IP anycast servers to .JP

- Severe crisis of the power outage in Tokyo (2003)
 - JP DNS operators tried to move some of the servers out of Tokyo
 - Using IP address of their main network prevent us to change the location without changing the IP address at that time
 - This was the potential problem, which prevent us to recover the DNS without thinking of other infrastructures placed in the same network, even in the severe network trouble
 - JP DNS could not add more NSes
 - JP DNS operators were thinking of the deployment of IPv6 at that time
 - 4 IPv6 servers out of 6 NSes is the limit

Fortunately, the power outage did not happen

Introducing IP anycast servers to .JP (2)

- JP DNS took the following solution
 - Keep the number of NS in 6
 - Move to PI (Provider Independent) addresses and new ASNs if possible
 - Add more servers using IP anycast technology
 - Now we have servers in Tokyo, Osaka and US

Technical details of a.dns.jp

Concerns of IP Anycast management

- IP address issues
 - Anycast need PI address or unused /24 address block
 - ccTLD can have PI address blocks for their nameservers
 - Unicast address still needed for each anycast nodes
 - To update the zone data, to maintain the servers
 - At least 1 NS should remain in unicast (RFC 3258)
- Budget issues
 - IP anycast requires transit and / or IX connectivities for each nodes
 - Maybe expensive for individual service
 - This network serves only 1 IP address to the public
- Measurement issues
 - It is hard to know all the servers are up in anycast address
 - Checking unicast address is not enough
 - Multiple measuring address required

Nameserver configurations

- Multiple addresses are needed in a server
 - One for IP anycast service
 - One (or more) unicast address(es) for maintenance and zone update
- Not so much difference from unicast servers
 - in BIND9, following options should be considered to make zone updates to work
 - query-source
 - transfer-source
 - notify-source

Consideration points

- Local nodes and global nodes
 - Local nodes are for IX connections
 - No-export option in BGP peers
 - Global nodes are for transit connections
 - 2 global nodes and several local nodes may be good
 - Some trouble may occur by uRPF (unicast Reverse Path Forwarding)
 - Some ISPs use uRPF technology for very intelligent network filtering

Example of IP Anycast effect

• DoS like queries in Osaka node did not harm any in Tokyo node

Osaka node

Tokyo node

BCPs

- Some BCP activities exist
 - Distributing Authoritative Name Servers via Shared Unicast Addresses
 - RFC 3258
 - Operations of Anycast Services
 - draft-ietf-grow-anycast-02.txt
 - BGP Anycast Node for Authoritative Name Server Requirements
 - draft-morishita-dnsop-anycast-node-requirements-01.txt

Appendix: NS maximum number estimation

- DNS protocol has limitation in UDP response packet size
- More NSs make .JP DNS more reliable
 - Name compression
- Estimation for .JP (dns.jp)
- "preferred-glue a" and / or EDNS0 may moderate the limitation

NS	AAAA	A	Add.	Judge	NS	AAAA	A	Addi.	Store
3	3	3	AAAA x3, A x3	Nice	4	4	4	AAAA x4, A x3	OK
4	3	4	AAAA x3, A x4	Nice	5	4	5	AAAA x4, A x2	OK
5	3	5	AAAA x3, A x4	OK	6	4	6	AAAA x4, A x1	OK
6	3	6	AAAA x3, A x3	OK	7	4	7	$AAAA < 4$, $A \times 0$	NG
7	3	7	AAAA x3, A x2	OK	5	5	5	AAAA x5, A x1	OK
8	3	8	AAAA x3, A x1	OK	6	5	6	AAAA x5, A x0	Bad
9	3	9	AAAA x3, A x0	Bad	7	5	7	AAAA < 5, A x 0	NG
10	3	10	$AAAA < 3$, $A \times 0$	NG	6	6	6	AAAA <6, A x0	NG

Questions?

http://jprs.jp/

http://日本レジストリサービス.jp/

